Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9709
Am J Physiol Cell Physiol 2000 Apr 01;2784:C667-75. doi: 10.1152/ajpcell.2000.278.4.C667.
Show Gene links Show Anatomy links

Ca(2+)-dependent activation of Cl(-) currents in Xenopus oocytes is modulated by voltage.

Callamaras N , Parker I .


???displayArticle.abstract???
Ca(2+)-activated Cl(-) currents (I(Cl,Ca)) were examined using fluorescence confocal microscopy to monitor intracellular Ca(2+) liberation evoked by flash photolysis of caged inositol 1,4, 5-trisphosphate (InsP(3)) in voltage-clamped Xenopus oocytes. Currents at +40 mV exhibited a steep dependence on InsP(3) concentration ([InsP(3)]), whereas currents at -140 mV exhibited a higher threshold and more graded relationship with [InsP(3)]. Ca(2+) levels required to half-maximally activate I(Cl,Ca) were about 50% larger at -140 mV than at +40 mV, and currents evoked by small Ca(2+) elevations were reduced >25-fold. The half-decay time of Ca(2+) signals shortened at increasingly positive potentials, whereas the decay of I(Cl,Ca) lengthened. The steady-state current-voltage (I-V) relationship for I(Cl,Ca) exhibited outward rectification with weak photolysis flashes but became more linear with stronger stimuli. Instantaneous I-V relationships were linear with both strong and weak stimuli. Current relaxations following voltage steps during activation of I(Cl,Ca) decayed with half-times that shortened from about 100 ms at +10 mV to 20 ms at -160 mV. We conclude that InsP(3)-mediated Ca(2+) liberation activates a single population of Cl(-) channels, which exhibit voltage-dependent Ca(2+) activation and voltage-independent instantaneous conductance.

???displayArticle.pubmedLink??? 10751316
???displayArticle.link??? Am J Physiol Cell Physiol
???displayArticle.grants??? [+]