Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Search Papers

Advanced Search with textpresso


Filter by date: Year(4-digits)   to 

Results Per Page


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Can't find an article you're looking for? Click here to manually add an article by PubMed ID.


Results 1 - 20 of 494 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

( Denotes literature images)

Ultrastructural criteria that prove the similarities between amphibian and human tumors., Abdelmeguid NE, el-Mofty MM, Sadek IA, Essawy AE, Abdel-Aleem EA., Oncology. 54 (3): 258-63.


Using Xenopus laevis Oocytes to Functionally Characterize Plant Transporters., Pike S, Matthes MS, McSteen P, Gassmann W., Curr Protoc Plant Biol. March 1, 2019; 4 (1): e20087.


Uric acid analogue as a possible xenobiotic marker of uric acid transporter Urat1 in rats., Arakawa H, Amezawa N, Katsuyama T, Nakanishi T, Tamai I., Drug Metab Pharmacokinet. December 27, 2018;


Unique Composition of Intronless and Intron-Containing Type I IFNs in the Tibetan Frog Nanorana parkeri Provides New Evidence To Support Independent Retroposition Hypothesis for Type I IFN Genes in Amphibians., Gan Z, Yang YC, Chen SN, Hou J, Laghari ZA, Huang B, Li N, Nie P., J Immunol. December 1, 2018; 201 (11): 3329-3342.


Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence., Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Krey LC, Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT., Mol Biol Cell. October 10, 2018; mbcE18080496.                  


Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa., Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R., Curr Biol. October 8, 2018; 28 (19): 3075-3085.e7.


Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine., Fukuzawa T, Kikuchi Y., Tissue Cell. October 1, 2018; 54 55-58.


Unexplained cardiac arrest: a tale of conflicting interpretations of KCNQ1 genetic test results., Chua HC, Servatius H, Asatryan B, Schaller A, Rieubland C, Noti F, Seiler J, Roten L, Baldinger SH, Tanner H, Fuhrer J, Haeberlin A, Lam A, Pless SA, Medeiros-Domingo A., Clin Res Cardiol. August 1, 2018; 107 (8): 670-678.


Use of a translucent refuge for Xenopus tropicalis with the aim of improving welfare., Cooke GM., Lab Anim. June 1, 2018; 52 (3): 304-307.


URAT1 and GLUT9 mutations in Spanish patients with renal hypouricemia., Claverie-Martin F, Trujillo-Suarez J, Gonzalez-Acosta H, Aparicio C, Justa Roldan ML, Stiburkova B, Ichida K, Martín-Gomez MA, Herrero Goñi M, Carrasco Hidalgo-Barquero M, Iñigo V, Enriquez R, Cordoba-Lanus E, Garcia-Nieto VM, null null., Clin Chim Acta. June 1, 2018; 481 83-89.


Utilizing mass spectrometry imaging to map the thyroid hormones triiodothyronine and thyroxine in Xenopus tropicalis tadpoles., Goto-Inoue N, Sato T, Morisasa M, Kashiwagi A, Kashiwagi K, Sugiura Y, Sugiyama E, Suematsu M, Mori T., Anal Bioanal Chem. February 1, 2018; 410 (4): 1333-1340.


Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model., Marín-Barba M, Gavilán H, Gutiérrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler GN, Morris CJ, Morales MP, Ruiz A., Nanoscale. January 3, 2018; 10 (2): 690-704.


Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline., Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau AL, Lejon D, Sapin A, Combourieu B, Chetiveaux M, Le May C, Lafond T, Raveton M, Reynaud S., Proc Natl Acad Sci U S A. January 1, 2018; 115 (19): E4416-E4425.        


Using Zebrafish to Study Collective Cell Migration in Development and Disease., Olson HM, Nechiporuk AV., Front Cell Dev Biol. January 1, 2018; 6 83.


Using two dyes to observe the competition of Ca2+ trapping mechanisms and their effect on intracellular Ca2+ signals., Piegari E, Lopez LF, Ponce Dawson S., Phys Biol. January 1, 2018; 15 (6): 066006.


Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb., Spirhanzlova P, De Groef B, Nicholson FE, Grommen SVH, Marras G, Sébillot A, Demeneix BA, Pallud-Mothré S, Lemkine GF, Tindall AJ, Du Pasquier D., Comp Biochem Physiol C Toxicol Pharmacol. October 1, 2017; 200 52-58.


Ultrafast flavin photoreduction in an oxidized animal (6-4) photolyase through an unconventional tryptophan tetrad., Martin R, Lacombat F, Espagne A, Dozova N, Plaza P, Yamamoto J, Müller P, Brettel K, de la Lande A., Phys Chem Chem Phys. September 20, 2017; 19 (36): 24493-24504.


Unencumbered Pol β lyase activity in nucleosome core particles., Rodriguez Y, Howard MJ, Cuneo MJ, Prasad R, Wilson SH., Nucleic Acids Res. September 6, 2017; 45 (15): 8901-8915.              


Uricosuric targets of tranilast., Mandal AK, Mercado A, Foster A, Zandi-Nejad K, Mount DB., Pharmacol Res Perspect. April 1, 2017; 5 (2): e00291.                    


Use of Xenopus laevis Oocytes to Study Auxin Transport., Fastner A, Absmanner B, Hammes UZ., Methods Mol Biol. January 1, 2017; 1497 259-270.

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.0


Major funding for Xenbase is provided by grant P41 HD064556