Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34806
J Steroid Biochem Mol Biol 2007 Jan 01;1031:35-43. doi: 10.1016/j.jsbmb.2006.07.001.
Show Gene links Show Anatomy links

Functional genome analysis indicates loss of 17beta-hydroxysteroid dehydrogenase type 2 enzyme in the zebrafish.

Mindnich R , Hrabe de Angelis M , Adamski J .


???displayArticle.abstract???
Among the family of 17beta-hydroxysteroid dehydrogenases, the type 2 (17beta-HSD 2) is the main enzyme responsible for inactivation of estrogens and androgens, catalyzing the oxidation of the C17 hydroxyl group. 17beta-HSD 2 has been studied only in mammals, its occurrence and function in other vertebrates hardly known. We investigated the presence of homologs in non-mammalian species and found sequences of 17beta-HSD 2 and its closest homolog 11beta-HSD 2 in zebrafish (Danio rerio), Takifugu rubripes, Tetraodon nigroviridis, Xenopus tropicalis and chicken databases. Furthermore, we cloned zebrafish 17beta-HSD 2 from ovarian tissue and found high expression also in the testis of adult fish and throughout embryogenesis. The enzyme, though, is inactive likely due to a non-sense N-terminal region including a dysfunctional cofactor binding motif. Replacement of the affected part by the corresponding human 17beta-HSD 2 sequence fully restored enzymatic activity. Comparison of all retrieved 17beta-HSD 2 sequences indicates that this functional loss may have occurred only in zebrafish, where steroid inactivation at position C17 seems to pursue without the protein studied. The closely related 11beta-HSD 2 is unlikely to substitute for 17beta-HSD 2 since in our hands it did not catalyze the respective oxidation of testosterone or estradiol.

???displayArticle.pubmedLink??? 17085046
???displayArticle.link??? J Steroid Biochem Mol Biol