Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Search Papers

Advanced Search with textpresso


Filter by date: Year(4-digits)   to 

Results Per Page


Alphabetic Search


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Can't find an article you're looking for? Click here to manually add an article by PubMed ID.


Results 1 - 50 of 91 results

Page(s): 1 2 Next

( Denotes literature images)
MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2.
Jiang T, Sui D, You D, Yao S, Zhang L, Wang Y, Zhao J, Zhang Y.
Cell Cycle. July 23, 2018; 1-11.

Identification of circular RNAs and their alterations involved in developing male Xenopus laevis chronically exposed to atrazine.
Sai L, Li L, Hu C, Qu B, Guo Q, Jia Q, Zhang Y, Bo C, Li X, Shao H, Ng JC, Peng C.
Chemosphere. June 1, 2018; 200 295-301.

Validation and bioinformatics analysis of differentially expressed circRNAs involved in developing male Xenopus laevis chronically exposed to atrazine.
Sai L, Li L, Hu C, Qu B, Guo Q, Jia Q, Zhang Y, Bo C, Li X, Shao H, Ng JC, Peng C.
Data Brief. June 1, 2018; 18 1282-1291.

Asymmetric development of the nervous system.
Alqadah A, Hsieh YW, Morrissey ZD, Chuang CF.
Dev Dyn. January 1, 2018; 247 (1): 124-137.

RNA helicase Mov10 is essential for gastrulation and central nervous system development.
Skariah G, Perry KJ, Drnevich J, Henry JJ, Ceman S.
Dev Dyn. January 1, 2018; 247 (4): 660-671.

microRNAs associated with early neural crest development in Xenopus laevis.
Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN.
BMC Genomics. January 1, 2018; 19 (1): 59.

miR-206 is required for changes in cell adhesion that drive muscle cell morphogenesis in Xenopus laevis.
Vergara HM, Ramirez J, Rosing T, Nave C, Blandino R, Saw D, Saraf P, Piexoto G, Coombes C, Adams M, Domingo CR.
Dev Biol. January 1, 2018; 438 (2): 94-110.

Neurotransmitter Switching Regulated by miRNAs Controls Changes in Social Preference.
Dulcis D, Lippi G, Stark CJ, Do LH, Berg DK, Spitzer NC.
Neuron. September 13, 2017; 95 (6): 1319-1333.e5.

Developmentally regulated long non-coding RNAs in Xenopus tropicalis.
Forouzmand E, Owens NDL, Blitz IL, Paraiso KD, Khokha MK, Gilchrist MJ, Xie X, Cho KWY.
Dev Biol. January 1, 2017; 426 (2): 401-408.

miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA.
Bellon A, Iyer A, Bridi S, Lee FCY, Ovando-Vázquez C, Corradi E, Longhi S, Roccuzzo M, Strohbuecker S, Naik S, Sarkies P, Miska E, Abreu-Goodger C, Holt CE, Baudet ML.
Cell Rep. January 1, 2017; 18 (5): 1171-1186.

Comparative microRNAome analysis of the testis and ovary of the Chinese giant salamander.
Chen R, Du J, Ma L, Wang LQ, Xie SS, Yang CM, Lan XY, Pan CY, Dong WZ.
Reproduction. January 1, 2017; 154 (3): 169-179.

Bim gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development.
Cerqueira DM, Bodnar AJ, Phua YL, Freer R, Hemker SL, Walensky LD, Hukriede NA, Ho J.
FASEB J. January 1, 2017; 31 (8): 3540-3554.

Genome evolution in the allotetraploid frog Xenopus laevis.
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS.
Nature. October 20, 2016; 538 (7625): 336-343.

Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis.
Walentek P, Quigley IK, Sun DI, Sajjan UK, Kintner C, Harland RM.
Elife. March 28, 2016; 5

lin28 proteins promote expression of 17∼92 family miRNAs during amphibian development.
Warrander F, Faas L, Kovalevskiy O, Peters D, Coles M, Antson AA, Genever P, Isaacs HV.
Dev Dyn. January 1, 2016; 245 (1): 34-46.

Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1.
Liu C, Lou CH, Shah V, Ritter R, Talley J, Soibam B, Benham A, Zhu H, Perez E, Shieh YE, Gunaratne PH, Sater AK.
Dev Biol. January 1, 2016; 409 (1): 26-38.

CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation.
Wilczynska A, Git A, Argasinska J, Belloc E, Standart N.
PLoS One. January 1, 2016; 11 (2): e0146792.

MicroRNAs as key regulators of GTPase-mediated apical actin reorganization in multiciliated epithelia.
Mercey O, Kodjabachian L, Barbry P, Marcet B.
Small GTPases. January 1, 2016; 7 (2): 54-8.

The Role of microRNAs in Animal Cell Reprogramming.
Cruz-Santos MC, Aragón-Raygoza A, Espinal-Centeno A, Arteaga-Vázquez M, Cruz-Hernández A, Bako L, Cruz-Ramírez A.
Stem Cells Dev. January 1, 2016; 25 (14): 1035-49.

SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl- accumulation and salt tolerance in Arabidopsis thaliana.
Qiu J, Henderson SW, Tester M, Roy SJ, Gilliham M.
J Exp Bot. January 1, 2016; 67 (15): 4495-505.

AtNPF2.5 Modulates Chloride (Cl(-)) Efflux from Roots of Arabidopsis thaliana.
Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo GM, Tester M, Gilliham M, Roy SJ.
Front Plant Sci. January 1, 2016; 7 2013.

Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division.
Sidova M, Sindelka R, Castoldi M, Benes V, Kubista M.
Sci Rep. September 21, 2015; 5 11157.

Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo.
Waghray S, Williams C, Coon JJ, Wickens M.
RNA. July 1, 2015; 21 (7): 1335-45.

Exportin-5 mediates nuclear export of SRP RNA in vertebrates.
Takeiwa T, Taniguchi I, Ohno M.
Genes Cells. April 1, 2015; 20 (4): 281-91.

miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways.
Chevalier B, Adamiok A, Mercey O, Revinski DR, Zaragosi LE, Pasini A, Kodjabachian L, Barbry P, Marcet B.
Nat Commun. January 20, 2015; 6 8386.

A Database of microRNA Expression Patterns in Xenopus laevis.
Ahmed A, Ward NJ, Moxon S, Lopez-Gomollon S, Viaut C, Tomlinson ML, Patrushev I, Gilchrist MJ, Dalmay T, Dotlic D, Münsterberg AE, Wheeler GN.
PLoS One. January 1, 2015; 10 (10): e0138313.

myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis.
Goljanek-Whysall K, Mok GF, Fahad Alrefaei A, Kennerley N, Wheeler GN, Münsterberg A.
Development. September 1, 2014; 141 (17): 3378-87.

Drosha protein levels are translationally regulated during Xenopus oocyte maturation.
Muggenhumer D, Vesely C, Nimpf S, Tian N, Yongfeng J, Jantsch MF.
Mol Biol Cell. July 1, 2014; 25 (13): 2094-104.

Conserved microRNA editing in mammalian evolution, development and disease.
Warnefors M, Liechti A, Halbert J, Valloton D, Kaessmann H.
Genome Biol. June 25, 2014; 15 (6): R83.

miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110.
Song R, Walentek P, Sponer N, Klimke A, Lee JS, Dixon G, Harland R, Wan Y, Lishko P, Lize M, Kessel M, He L.
Nature. June 5, 2014; 510 (7503): 115-20.

MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney.
Romaker D, Kumar V, Cerqueira DM, Cox RM, Wessely O.
Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6335-40.

Poly(A)-tail profiling reveals an embryonic switch in translational control.
Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP.
Nature. April 3, 2014; 508 (7494): 66-71.

Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway.
Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, Wilkinson MF.
Cell Rep. February 27, 2014; 6 (4): 748-64.

Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements.
Harding JL, Horswell S, Heliot C, Armisen J, Zimmerman LB, Luscombe NM, Miska EA, Hill CS.
Genome Res. January 1, 2014; 24 (1): 96-106.

Morpholino studies in Xenopus brain development.
Bestman JE, Cline HT.
Methods Mol Biol. January 1, 2014; 1082 155-71.

Generation of endo-siRNAs in Xenopus laevis oocytes.
Alnumeir S, Werner A.
Methods Mol Biol. January 1, 2014; 1173 27-32.

A tri-component conservation strategy reveals highly confident microRNA-mRNA interactions and evolution of microRNA regulatory networks.
Lin CC, Mitra R, Zhao Z.
PLoS One. January 1, 2014; 9 (7): e103142.

The identification of microRNAs in the whitespotted bamboo shark (Chiloscyllium plagiosum) liver by Illumina sequencing.
Zhang J, Liu Y, Zhang X, Pan J, Nie Z, Zhang W, Yu W, Chen J, Liu L, Li J, Guo J, Wu W, Zhu H, Lv Z.
Gene. September 15, 2013; 527 (1): 259-65.

Organic small hairpin RNAs (OshR): a do-it-yourself platform for transgene-based gene silencing.
Zeng M, Kuzirian MS, Harper L, Paradis S, Nakayama T, Lau NC.
Methods. September 15, 2013; 63 (2): 101-9.

MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny.
Nimmo R, Ciau-Uitz A, Ruiz-Herguido C, Soneji S, Bigas A, Patient R, Enver T.
Dev Cell. August 12, 2013; 26 (3): 237-49.

Lin28 proteins are required for germ layer specification in Xenopus.
Faas L, Warrander FC, Maguire R, Ramsbottom SA, Quinn D, Genever P, Isaacs HV.
Development. March 1, 2013; 140 (5): 976-86.

Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates.
Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, Grützner F, Odom DT, Patient R, Ponting CP, Klose RJ.
Elife. February 26, 2013; 2 e00348.

Identification and characterization of novel microRNA candidates from deep sequencing.
Wu Q, Wang C, Guo L, Ge Q, Lu Z.
Clin Chim Acta. January 16, 2013; 415 239-44.

The Lin28 cold-shock domain remodels pre-let-7 microRNA.
Mayr F, Schütz A, Döge N, Heinemann U.
Nucleic Acids Res. August 1, 2012; 40 (15): 7492-506.

Characterization of small RNAs in X. tropicalis gastrulae.
Faunes F, Almonacid LI, Melo F, Larrain J.
Genesis. July 1, 2012; 50 (7): 572-83.

Identification of novel microRNAs in Xenopus laevis metaphase II arrested eggs.
Ambady S, Wu Z, Dominko T.
Genesis. March 1, 2012; 50 (3): 286-99.

Characterization of small RNAs in Xenopus tropicalis gastrulae.
Faunes F, Almonacid LI, Melo F, Larrain J.
Genesis. March 1, 2012; 50 (3): 260-70.

Shaping development with ESCRTs.
Rusten TE, Vaccari T, Stenmark H.
Nat Cell Biol. January 1, 2012; 14 (1): 38-45.

Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8.
Senturia R, Laganowsky A, Barr I, Scheidemantle BD, Guo F.
PLoS One. January 1, 2012; 7 (7): e39688.

Reverse genetic studies using antisense morpholino oligonucleotides.
Zhao Y, Ishibashi S, Amaya E.
Methods Mol Biol. January 1, 2012; 917 143-54.

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.2
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556