Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Images Attributions Wiki Source
XB-ANTIBODY-14579111

Attributions for Notochord Ab2

Summary: Papers (40) ???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

creation reported in:


Absence of keratan sulphate from skeletal tissues of mouse and rat., Venn G, Mason RM., Biochem J. June 1, 1985; 228 (2): 443-50.


referenced by:


Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca2+ activity and is necessary for regeneration of spinal cord and skeletal muscle., Levin JB, Borodinsky LN., Cell Calcium. March 1, 2022; 102 102540.                                  


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J, Wielath FM, Vick P., Biol Open. July 15, 2021; 10 (7):                                           


Furry is required for cell movements during gastrulation and functionally interacts with NDR1., Cervino AS, Moretti B, Stuckenholz C, Grecco HE, Davidson LA, Davidson LA, Cirio MC., Sci Rep. March 23, 2021; 11 (1): 6607.                                  


Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus., Shi J, Zhao Y, Vonderfecht T, Winey M, Klymkowsky MW., Sci Rep. May 27, 2015; 5 10283.                    


Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo., Vivien C, Scerbo P, Girardot F, Le Blay K, Demeneix BA, Coen L., J Biol Chem. March 2, 2012; 287 (10): 7427-35.


Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus., Xu S, Cheng F, Liang J, Wu W, Zhang J., PLoS Biol. January 1, 2012; 10 (3): e1001286.                                    


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O, Dingwell KS, Nordheim A, Smith JC., Dev Biol. December 15, 2009; 336 (2): 313-26.          


Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration., Lin G, Slack JM., Dev Biol. April 15, 2008; 316 (2): 323-35.              


XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation., Hyodo-Miura J, Yamamoto TS, Hyodo AC, Iemura S, Kusakabe M, Nishida E, Natsume T, Ueno N., Dev Cell. July 1, 2006; 11 (1): 69-79.                                


Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS, Smith JC., Dev Biol. May 1, 2006; 293 (1): 252-67.                          


Members of the lysyl oxidase family are expressed during the development of the frog Xenopus laevis., Geach TJ, Dale L., Differentiation. October 1, 2005; 73 (8): 414-24.                      


Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B., Piepenburg O, Grimmer D, Williams PH, Smith JC., Development. October 1, 2004; 131 (20): 4977-86.              


Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor., Chung HA, Hyodo-Miura J, Kitayama A, Terasaka C, Nagamune T, Ueno N., Genes Cells. August 1, 2004; 9 (8): 749-61.                            


PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements., Kinoshita N, Iioka H, Miyakoshi A, Ueno N., Genes Dev. July 1, 2003; 17 (13): 1663-76.                    


Xhex-expressing endodermal tissues are essential for anterior patterning in Xenopus., Smithers LE, Jones CM., Mech Dev. December 1, 2002; 119 (2): 191-200.            


Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae., Yasuo H, Lemaire P., Development. October 1, 2001; 128 (19): 3783-93.      


Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function., Brickman JM, Jones CM, Clements M, Smith JC, Beddington RS., Development. June 1, 2000; 127 (11): 2303-15.                    


Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway., Tada M, Smith JC., Development. May 1, 2000; 127 (10): 2227-38.      


Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways., Conlon FL, Smith JC., Dev Biol. September 1, 1999; 213 (1): 85-100.


GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo., Shibata K, Ishimura A, Maéno M., Biochem Biophys Res Commun. November 9, 1998; 252 (1): 241-8.            


Antimorphic goosecoids., Ferreiro B, Artinger M, Cho K, Niehrs C., Development. April 1, 1998; 125 (8): 1347-59.


Expression of Xfz3, a Xenopus frizzled family member, is restricted to the early nervous system., Shi DL, Goisset C, Boucaut JC., Mech Dev. January 1, 1998; 70 (1-2): 35-47.                    


Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra., Tada M, O'Reilly MA, Smith JC., Development. June 1, 1997; 124 (11): 2225-34.                      


Analysis of Dishevelled signalling pathways during Xenopus development., Sokol SY., Curr Biol. November 1, 1996; 6 (11): 1456-67.                  


The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm., Carnac G, Kodjabachian L, Gurdon JB, Lemaire P., Development. October 1, 1996; 122 (10): 3055-65.              


Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos., Jones CM, Dale L, Hogan BL, Wright CV, Smith JC., Development. May 1, 1996; 122 (5): 1545-54.                


Inductive processes leading to inner ear formation during Xenopus development., Gallagher BC, Henry JJ, Grainger RM., Dev Biol. April 10, 1996; 175 (1): 95-107.


Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK, Fainsod A, Kim SH, De Robertis EM., Dev Biol. February 25, 1996; 174 (1): 174-8.  


Activin-like signal activates dorsal-specific maternal RNA between 8- and 16-cell stages of Xenopus., Hainski AM, Moody SA., Dev Genet. January 1, 1996; 19 (3): 210-21.


Endogenous retinoids in the zebrafish embryo and adult., Costaridis P, Horton C, Zeitlinger J, Holder N, Maden M., Dev Dyn. January 1, 1996; 205 (1): 41-51.


Cyclopamine, a steroidal alkaloid, disrupts development of cranial neural crest cells in Xenopus., Dunn MK, Mercola M, Moore DD., Dev Dyn. March 1, 1995; 202 (3): 255-70.


Induction of neuronal differentiation by planar signals in Xenopus embryos., Sater AK, Steinhardt RA, Keller R., Dev Dyn. August 1, 1993; 197 (4): 268-80.


Planar and vertical signals in the induction and patterning of the Xenopus nervous system., Ruiz i Altaba A., Development. September 1, 1992; 116 (1): 67-80.


Expression of tenascin mRNA in mesoderm during Xenopus laevis embryogenesis: the potential role of mesoderm patterning in tenascin regionalization., Umbhauer M, Riou JF, Spring J, Smith JC, Boucaut JC., Development. September 1, 1992; 116 (1): 147-57.            


Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm., Ruiz i Altaba A., Development. April 1, 1990; 108 (4): 595-604.


Mesoderm induction in Xenopus laevis: responding cells must be in contact for mesoderm formation but suppression of epidermal differentiation can occur in single cells., Symes K, Yaqoob M, Smith JC., Development. December 1, 1988; 104 (4): 609-18.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR, Elinson RP., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Biochemical specificity of Xenopus notochord., Smith JC, Watt FM., Differentiation. January 1, 1985; 29 (2): 109-15.          

???pagination.result.page??? 1