Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Images Attributions Wiki Source

Attributions for Lama1 Ab1

Summary: Papers (16) Results 1 - 16 of 16 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest
A model for investigating developmental eye repair in Xenopus laevis.
Kha CX, Son PH, Lauper J, Tseng KA.
Exp Eye Res. January 31, 2018; 169 38-47.

Development of Xenopus laevis bipotential gonads into testis or ovary is driven by sex-specific cell-cell interactions, proliferation rate, cell migration and deposition of extracellular matrix.
Piprek RP, Kloc M, Tassan JP, Kubiak JZ.
Dev Biol. December 15, 2017; 432 (2): 298-310.

A Molecular atlas of Xenopus respiratory system development.
Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Wert SE, Zorn AM.
Dev Dyn. January 1, 2015; 244 (1): 69-85.

A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7.
Charpentier MS, Tandon P, Trincot CE, Koutleva EK, Conlon FL.
PLoS One. January 1, 2015; 10 (2): e0116086.

An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis.
Buisson N, Sirour C, Moreau N, Denker E, Le Bouffant R, Goullancourt A, Darribère T, Bello V.
Development. December 1, 2014; 141 (23): 4569-79.

Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis.
Mawaribuchi S, Ikeda N, Fujitani K, Ito Y, Onuma Y, Komiya T, Takamatsu N, Ito M.
Endocrinology. October 1, 2014; 155 (10): 3996-4005.

The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis.
Leal MA, Fickel SR, Sabillo A, Ramirez J, Vergara HM, Nave C, Saw D, Domingo CR.
Dev Dyn. April 1, 2014; 243 (4): 509-26.

Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut.
Dush MK, Nascone-Yoder NM.
Development. April 1, 2013; 140 (7): 1457-66.

Early transcriptional targets of MyoD link myogenesis and somitogenesis.
Maguire RJ, Isaacs HV, Pownall ME.
Dev Biol. November 15, 2012; 371 (2): 256-68.

MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization.
Suzuki M, Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N.
Development. July 1, 2010; 137 (14): 2329-39.

In vivo analyzes of dystroglycan function during somitogenesis in Xenopus laevis.
Hidalgo M, Sirour C, Bello V, Moreau N, Beaudry M, Darribère T.
Dev Dyn. June 1, 2009; 238 (6): 1332-45.

The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth.
Dickinson AJ, Sive HL.
Development. April 1, 2009; 136 (7): 1071-81.

Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
Yoshii C, Ueda Y, Okamoto M, Araki M.
Dev Biol. March 1, 2007; 303 (1): 45-56.

Genetic screens for mutations affecting development of Xenopus tropicalis.
Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB.
PLoS Genet. June 1, 2006; 2 (6): e91.

Dystroglycan is required for proper retinal layering.
Lunardi A, Cremisi F, Dente L.
Dev Biol. February 15, 2006; 290 (2): 411-20.

Muscle formation in regenerating Xenopus froglet limb.
Satoh A, Ide H, Tamura K, Tamura K.
Dev Dyn. June 1, 2005; 233 (2): 337-46.

Page(s): 1

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.8.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556