Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Images Attributions Wiki Source
XB-ANTIBODY-14960058

Attributions for Vim Ab1

Summary: Papers (15) Other ( Labs(1) ) Results 1 - 15 of 15 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

creation reported in:


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA, Polson AG, Klymkowsky MW., Development. January 1, 1989; 105 (1): 61-74.                      


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW, Maynell LA, Polson AG., Development. July 1, 1987; 100 (3): 543-57.              


referenced by:


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G, González-Pinto K, Cebrián-Silla A, Peñailillo J, García-Verdugo JM, Larraín J., Neural Dev. January 1, 2021; 16 (1): 2.                              


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S, Srnak JA, Perry KJ, Henry JJ., Exp Eye Res. January 1, 2019; 184 107-125.                        


Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis., Edwards-Faret G, Cebrián-Silla A, Méndez-Olivos EE, González-Pinto K, García-Verdugo JM, Larraín J., J Comp Neurol. January 1, 2018; 526 (10): 1712-1732.


Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A, Woller DJ, Rodrigues P., Front Neural Circuits. January 1, 2018; 12 92.                


Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus., Martinez-De Luna RI, Ku RY, Aruck AM, Santiago F, Viczian AS, San Mauro D, Zuber ME., Dev Biol. January 1, 2017; 426 (2): 219-235.                      


Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages., Tlapakova T, Nguyen TM, Vegrichtova M, Sidova M, Strnadova K, Blahova M, Krylov V., Biol Open. September 15, 2016; 5 (9): 1275-82.          


Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., Domínguez L, Schlosser G, Shen S., Neuroscience. April 2, 2015; 290 61-79.  


Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl., Rao N, Song F, Jhamb D, Wang M, Milner DJ, Price NM, Belecky-Adams TL, Palakal MJ, Cameron JA, Li B, Chen X, Stocum DL., BMC Dev Biol. July 25, 2014; 14 32.                        


In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles., Bestman JE, Lee-Osbourne J, Cline HT., J Comp Neurol. February 1, 2012; 520 (2): 401-33.                      


Muscular dystrophy candidate gene FRG1 is critical for muscle development., Hanel ML, Wuebbles RD, Jones PL., Dev Dyn. June 1, 2009; 238 (6): 1502-12.        


Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration., Mescher AL, Wolf WL, Moseman EA, Hartman B, Harrison C, Nguyen E, Neff AW., Dev Comp Immunol. January 1, 2007; 31 (4): 383-93.  


Glial-defined rhombomere boundaries in developing Xenopus hindbrain., Yoshida M, Colman DR., J Comp Neurol. August 14, 2000; 424 (1): 47-57.              


Reattachment of retinas to cultured pigment epithelial monolayers from Xenopus laevis., Defoe DM, Easterling KC., Invest Ophthalmol Vis Sci. April 1, 1994; 35 (5): 2466-76.

Page(s): 1