Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Images Attributions Wiki Source

Attributions for Notochord Ab2

Summary: Papers (37) Results 1 - 37 of 37 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

creation reported in:

Absence of keratan sulphate from skeletal tissues of mouse and rat., Venn G, Mason RM., Biochem J. June 1, 1985; 228 (2): 443-50.

referenced by:

Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus., Shi J, Zhao Y, Vonderfecht T, Winey M, Klymkowsky MW., Sci Rep. May 27, 2015; 5 10283.                    

Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo., Vivien C, Scerbo P, Girardot F, Le Blay K, Demeneix BA, Coen L., J Biol Chem. March 2, 2012; 287 (10): 7427-35.

Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus., Xu S, Cheng F, Liang J, Wu W, Zhang J., PLoS Biol. January 1, 2012; 10 (3): e1001286.                                    

MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N., Development. July 1, 2010; 137 (14): 2329-39.                                                      

Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O, Dingwell KS, Nordheim A, Smith JC., Dev Biol. December 15, 2009; 336 (2): 313-26.          

Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration., Lin G, Slack JM., Dev Biol. April 15, 2008; 316 (2): 323-35.              

XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation., Hyodo-Miura J, Yamamoto TS, Hyodo AC, Iemura S, Kusakabe M, Nishida E, Natsume T, Ueno N., Dev Cell. July 1, 2006; 11 (1): 69-79.                                

Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS, Smith JC., Dev Biol. May 1, 2006; 293 (1): 252-67.                          

Members of the lysyl oxidase family are expressed during the development of the frog Xenopus laevis., Geach TJ, Dale L., Differentiation. October 1, 2005; 73 (8): 414-24.                      

Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B., Piepenburg O, Grimmer D, Williams PH, Smith JC., Development. October 1, 2004; 131 (20): 4977-86.              

Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor., Chung HA, Hyodo-Miura J, Kitayama A, Terasaka C, Nagamune T, Ueno N., Genes Cells. August 1, 2004; 9 (8): 749-61.                            

PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements., Kinoshita N, Iioka H, Miyakoshi A, Ueno N., Genes Dev. July 1, 2003; 17 (13): 1663-76.                    

Xhex-expressing endodermal tissues are essential for anterior patterning in Xenopus., Smithers LE, Jones CM., Mech Dev. December 1, 2002; 119 (2): 191-200.            

Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae., Yasuo H, Lemaire P., Development. October 1, 2001; 128 (19): 3783-93.      

Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function., Brickman JM, Jones CM, Clements M, Smith JC, Beddington RS., Development. June 1, 2000; 127 (11): 2303-15.                    

Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway., Tada M, Smith JC., Development. May 1, 2000; 127 (10): 2227-38.      

Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways., Conlon FL, Smith JC., Dev Biol. September 1, 1999; 213 (1): 85-100.

GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo., Shibata K, Ishimura A, Maéno M., Biochem Biophys Res Commun. November 9, 1998; 252 (1): 241-8.            

Antimorphic goosecoids., Ferreiro B, Artinger M, Cho K, Niehrs C., Development. April 1, 1998; 125 (8): 1347-59.

Expression of Xfz3, a Xenopus frizzled family member, is restricted to the early nervous system., Shi DL, Goisset C, Boucaut JC., Mech Dev. January 1, 1998; 70 (1-2): 35-47.                    

Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra., Tada M, O'Reilly MA, Smith JC., Development. June 1, 1997; 124 (11): 2225-34.                      

Analysis of Dishevelled signalling pathways during Xenopus development., Sokol SY., Curr Biol. November 1, 1996; 6 (11): 1456-67.                  

The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm., Carnac G, Kodjabachian L, Gurdon JB, Lemaire P., Development. October 1, 1996; 122 (10): 3055-65.              

Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos., Jones CM, Dale L, Hogan BL, Wright CV, Smith JC., Development. May 1, 1996; 122 (5): 1545-54.                

Inductive processes leading to inner ear formation during Xenopus development., Gallagher BC, Henry JJ, Grainger RM., Dev Biol. April 10, 1996; 175 (1): 95-107.

Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK, Fainsod A, Kim SH, De Robertis EM., Dev Biol. February 25, 1996; 174 (1): 174-8.  

Activin-like signal activates dorsal-specific maternal RNA between 8- and 16-cell stages of Xenopus., Hainski AM, Moody SA., Dev Genet. January 1, 1996; 19 (3): 210-21.

Endogenous retinoids in the zebrafish embryo and adult., Costaridis P, Horton C, Zeitlinger J, Holder N, Maden M., Dev Dyn. January 1, 1996; 205 (1): 41-51.

Cyclopamine, a steroidal alkaloid, disrupts development of cranial neural crest cells in Xenopus., Dunn MK, Mercola M, Moore DD., Dev Dyn. March 1, 1995; 202 (3): 255-70.

Induction of neuronal differentiation by planar signals in Xenopus embryos., Sater AK, Steinhardt RA, Keller R., Dev Dyn. August 1, 1993; 197 (4): 268-80.

Planar and vertical signals in the induction and patterning of the Xenopus nervous system., Ruiz i Altaba A., Development. September 1, 1992; 116 (1): 67-80.

Expression of tenascin mRNA in mesoderm during Xenopus laevis embryogenesis: the potential role of mesoderm patterning in tenascin regionalization., Umbhauer M, Riou JF, Spring J, Smith JC, Boucaut JC., Development. September 1, 1992; 116 (1): 147-57.            

Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm., Ruiz i Altaba A., Development. April 1, 1990; 108 (4): 595-604.

Mesoderm induction in Xenopus laevis: responding cells must be in contact for mesoderm formation but suppression of epidermal differentiation can occur in single cells., Symes K, Yaqoob M, Smith JC., Development. December 1, 1988; 104 (4): 609-18.

The entire mesodermal mantle behaves as Spemann''s organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR, Elinson RP., Dev Biol. May 1, 1988; 127 (1): 64-77.                      

Biochemical specificity of Xenopus notochord., Smith JC, Watt FM., Differentiation. January 1, 1985; 29 (2): 109-15.          

Page(s): 1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556