Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4897) Expression Attributions Wiki
XB-ANAT-3713

Papers associated with left (and lpar1)

Limit to papers also referencing gene:
Show all left papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity., Kuriyama S., J Cell Biol. July 7, 2014; 206 (1): 113-27.                                


Activation of lysophosphatidic Acid receptor is coupled to enhancement of ca(2+)-activated potassium channel currents., Choi SH., Korean J Physiol Pharmacol. June 1, 2013; 17 (3): 223-8.          


The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis., Massé K., Int J Dev Biol. January 1, 2010; 54 (8-9): 1361-74.                                          


G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo., Tao Q, Tao Q., Development. July 1, 2007; 134 (14): 2651-61.                    


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


A novel G protein-coupled receptor, related to GPR4, is required for assembly of the cortical actin skeleton in early Xenopus embryos., Tao Q, Tao Q., Development. June 1, 2005; 132 (12): 2825-36.              


Lysophosphatidic acid signaling controls cortical actin assembly and cytoarchitecture in Xenopus embryos., Lloyd B., Development. February 1, 2005; 132 (4): 805-16.                    

???pagination.result.page??? 1