Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4897) Expression Attributions Wiki
XB-ANAT-3713

Papers associated with left (and nav1)

Limit to papers also referencing gene:
Show all left papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Characterization of Na+ currents regulating intrinsic excitability of optic tectal neurons., Thompson AC., Life Sci Alliance. January 1, 2024; 7 (1):                         


Identification of SCN5a p.C335R Variant in a Large Family with Dilated Cardiomyopathy and Conduction Disease., Sedaghat-Hamedani F., Int J Mol Sci. November 30, 2021; 22 (23):             


Functional cross-talk between phosphorylation and disease-causing mutations in the cardiac sodium channel Nav1.5., Galleano I., Proc Natl Acad Sci U S A. August 17, 2021; 118 (33):                   


Functional and Structural Characterization of ClC-1 and Nav1.4 Channels Resulting from CLCN1 and SCN4A Mutations Identified Alone and Coexisting in Myotonic Patients., Brenes O., Cells. February 11, 2021; 10 (2):           


Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels., Kawai T., J Biol Chem. January 1, 2021; 296 100783.                  


Uncoupling sodium channel dimers restores the phenotype of a pain-linked Nav 1.7 channel mutation., Rühlmann AH., Br J Pharmacol. October 1, 2020; 177 (19): 4481-4496.                          


Carvacrol inhibits the neuronal voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.3, Nav1.7, and Nav1.8 expressed in Xenopus oocytes with different potencies., Horishita T., J Pharmacol Sci. April 1, 2020; 142 (4): 140-147.          


Polyunsaturated fatty acid analogues differentially affect cardiac NaV, CaV, and KV channels through unique mechanisms., Bohannon BM., Elife. March 24, 2020; 9                                                               


Gating control of the cardiac sodium channel Nav1.5 by its β3-subunit involves distinct roles for a transmembrane glutamic acid and the extracellular domain., Salvage SC., J Biol Chem. December 20, 2019; 294 (51): 19752-19763.            


The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier., Brohawn SG., Elife. November 1, 2019; 8                     


A Xenopus oocyte model system to study action potentials., Corbin-Leftwich A., J Gen Physiol. November 5, 2018; 150 (11): 1583-1593.            


Phoneutria nigriventer Spider Toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating., Peigneur S., Toxins (Basel). August 21, 2018; 10 (9):           


Improving the characterization of calcium channel gating pore currents with Stac3., Chahine M., J Gen Physiol. March 5, 2018; 150 (3): 375-378.  


Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains., Hsu EJ., J Gen Physiol. March 6, 2017; 149 (3): 389-403.                


Ultrasound modulates ion channel currents., Kubanek J., Sci Rep. April 26, 2016; 6 24170.                      


Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy., Freyermuth F., Nat Commun. April 11, 2016; 7 11067.              


Binary architecture of the Nav1.2-β2 signaling complex., Das S., Elife. January 28, 2016; 5                     


Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic" Toxin from Tityus serrulatus Venom., Pucca MB., Toxins (Basel). June 30, 2015; 7 (7): 2534-50.          


The Scorpion Toxin Tf2 from Tityus fasciolatus Promotes Nav1.3 Opening., Camargos TS., PLoS One. June 5, 2015; 10 (6): e0128578.          


Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels., Cristofori-Armstrong B., Sci Rep. January 12, 2015; 5 14763.                                


Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents., Gilchrist J., ACS Chem Biol. May 16, 2014; 9 (5): 1204-12.          


Action of clathrodin and analogues on voltage-gated sodium channels., Peigneur S., Mar Drugs. March 28, 2014; 12 (4): 2132-43.          


Functional expression of Rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit., He B., PLoS One. January 1, 2014; 9 (1): e85188.        


Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels., Capes DL., J Gen Physiol. August 1, 2013; 142 (2): 101-12.              


Molecular mechanism of voltage sensing in voltage-gated proton channels., Gonzalez C., J Gen Physiol. March 1, 2013; 141 (3): 275-85.              


Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel., Goldschen-Ohm MP., Nat Commun. January 1, 2013; 4 1350.                


Intermediate state trapping of a voltage sensor., Lacroix JJ., J Gen Physiol. December 1, 2012; 140 (6): 635-52.                      


Estimating the voltage-dependent free energy change of ion channels using the median voltage for activation., Chowdhury S., J Gen Physiol. January 1, 2012; 139 (1): 3-17.            


Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors., Bosmans F., J Gen Physiol. July 1, 2011; 138 (1): 59-72.                  


Phyla- and Subtype-Selectivity of CgNa, a Na Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea., Billen B., Front Pharmacol. November 23, 2010; 1 133.        


Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics., Arcisio-Miranda M., J Gen Physiol. November 1, 2010; 136 (5): 541-54.                


Membrane trauma and Na+ leak from Nav1.6 channels., Wang JA., Am J Physiol Cell Physiol. October 1, 2009; 297 (4): C823-34.


The external pore loop interacts with S6 and S3-S4 linker in domain 4 to assume an essential role in gating control and anticonvulsant action in the Na(+) channel., Yang YC., J Gen Physiol. August 1, 2009; 134 (2): 95-113.                      


H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration., Adams DS., Development. April 1, 2007; 134 (7): 1323-35.          


RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development., Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.                    


Occurrence of a tetrodotoxin-sensitive calcium current in rat ventricular myocytes after long-term myocardial infarction., Alvarez JL., Cardiovasc Res. September 1, 2004; 63 (4): 653-61.


Repressor element-1 silencing transcription/neuron-restrictive silencer factor is required for neural sodium channel expression during development of Xenopus., Armisén R., J Neurosci. October 1, 2002; 22 (19): 8347-51.                

???pagination.result.page??? 1