Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3130) Expression Attributions Wiki
XB-ANAT-821

Papers associated with kidney (and slc12a3)

Limit to papers also referencing gene:
Show all kidney papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components., Hantel F., J Cell Sci. May 1, 2022; 135 (9):                                     


Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis., Delhermite J., PLoS Genet. January 18, 2022; 18 (1): e1010012.                                                              


Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T., Development. November 1, 2021; 148 (21):                                                                 


Role of KLHL3 and dietary K+ in regulating KS-WNK1 expression., Ostrosky-Frid M., Am J Physiol Renal Physiol. May 1, 2021; 320 (5): F734-F747.                    


Structure-function relationships in the renal NaCl cotransporter (NCC)., Moreno E., Curr Top Membr. January 1, 2019; 83 177-204.


Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC., Argaiz ER., Am J Physiol Renal Physiol. September 1, 2018; 315 (3): F734-F745.


Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney., Zhang B., Development. March 22, 2018; 145 (6):                         


Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells., Rosenbaek LL., Am J Physiol Renal Physiol. August 1, 2017; 313 (2): F495-F504.


Renal localization and regulation by dietary phosphate of the MCT14 orphan transporter., Knöpfel T., PLoS One. June 29, 2017; 12 (6): e0177942.          


Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay., Valdez-Flores MA., Am J Physiol Renal Physiol. December 1, 2016; 311 (6): F1159-F1167.


The European Eel NCCβ Gene Encodes a Thiazide-resistant Na-Cl Cotransporter., Moreno E., J Biol Chem. October 21, 2016; 291 (43): 22472-22481.


ROMK expression remains unaltered in a mouse model of familial hyperkalemic hypertension caused by the CUL3Δ403-459 mutation., Murthy M., Physiol Rep. July 1, 2016; 4 (13):             


Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling., Tutakhel OA., Am J Physiol Renal Physiol. February 1, 2016; 310 (3): F204-16.


Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3., McCormick JA., J Clin Invest. November 1, 2014; 124 (11): 4723-36.


Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts., Cerqueira DM., Dev Biol. October 1, 2014; 394 (1): 54-64.                                          


MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney., Romaker D., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6335-40.                                                          


Regulation of NKCC2 activity by inhibitory SPAK isoforms: KS-SPAK is a more potent inhibitor than SPAK2., Park HJ., Am J Physiol Renal Physiol. December 15, 2013; 305 (12): F1687-96.


Expression and functional characterization of Xhmg-at-hook genes in Xenopus laevis., Macrì S., PLoS One. July 1, 2013; 8 (7): e69866.              


Regulation of G-protein signaling via Gnas is required to regulate proximal tubular growth in the Xenopus pronephros., Zhang B., Dev Biol. April 1, 2013; 376 (1): 31-42.                        


Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration., Ulmer B., Cell Rep. March 28, 2013; 3 (3): 615-21.              


Insulin increases the functional activity of the renal NaCl cotransporter., Chávez-Canales M., J Hypertens. February 1, 2013; 31 (2): 303-11.


Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC., Rosenbaek LL., J Physiol. December 1, 2012; 590 (23): 6121-39.


A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo., Oi K., Biol Open. February 15, 2012; 1 (2): 120-7.              


Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway., Arroyo JP., J Am Soc Nephrol. September 1, 2011; 22 (9): 1707-19.


WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters., Rinehart J., J Biol Chem. August 26, 2011; 286 (34): 30171-80.              


Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models., Liu Z., Hum Mol Genet. March 1, 2011; 20 (5): 855-66.


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


The activity of the thiazide-sensitive Na(+)-Cl(-) cotransporter is regulated by protein phosphatase PP4., Glover M., Can J Physiol Pharmacol. October 1, 2010; 88 (10): 986-95.


Effects of dietary K on cell-surface expression of renal ion channels and transporters., Frindt G., Am J Physiol Renal Physiol. October 1, 2010; 299 (4): F890-7.


The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice., Leviel F., J Clin Invest. May 1, 2010; 120 (5): 1627-35.


The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity., Tran U., Development. April 1, 2010; 137 (7): 1107-16.              


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R., Development. December 1, 2009; 136 (23): 3927-36.              


Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway., Rozansky DJ., J Clin Invest. September 1, 2009; 119 (9): 2601-12.


Renal and brain isoforms of WNK3 have opposite effects on NCCT expression., Glover M., J Am Soc Nephrol. June 1, 2009; 20 (6): 1314-22.


Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent., Welker P., Am J Physiol Renal Physiol. September 1, 2008; 295 (3): F789-802.


Surface expression of epithelial Na channel protein in rat kidney., Frindt G., J Gen Physiol. June 1, 2008; 131 (6): 617-27.                            


Cotransporters, WNKs and hypertension: an update., Flatman PW., Curr Opin Nephrol Hypertens. March 1, 2008; 17 (2): 186-92.


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Identification and gene expression of versican during early development of Xenopus., Casini P., Int J Dev Biol. January 1, 2008; 52 (7): 993-8.      


The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex., Yang CL., J Clin Invest. November 1, 2007; 117 (11): 3403-11.


Molecular variants of the thiazide-sensitive Na+-Cl- cotransporter in hypertensive families., Keszei AP., J Hypertens. October 1, 2007; 25 (10): 2074-81.


The prepattern transcription factor Irx3 directs nephron segment identity., Reggiani L., Genes Dev. September 15, 2007; 21 (18): 2358-70.                


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


WNK4 kinase is a negative regulator of K+-Cl- cotransporters., Garzón-Muvdi T., Am J Physiol Renal Physiol. April 1, 2007; 292 (4): F1197-207.


An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis., Ring AM., Proc Natl Acad Sci U S A. March 6, 2007; 104 (10): 4025-9.


WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4., Jiang Y., Am J Physiol Renal Physiol. February 1, 2007; 292 (2): F545-54.


WNK1 affects surface expression of the ROMK potassium channel independent of WNK4., Cope G., J Am Soc Nephrol. July 1, 2006; 17 (7): 1867-74.


WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1)., Leng Q., J Physiol. March 1, 2006; 571 (Pt 2): 275-86.


Dominant-negative regulation of WNK1 by its kidney-specific kinase-defective isoform., Subramanya AR., Am J Physiol Renal Physiol. March 1, 2006; 290 (3): F619-24.


WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis., Rinehart J., Proc Natl Acad Sci U S A. November 15, 2005; 102 (46): 16777-82.

???pagination.result.page??? 1 2 ???pagination.result.next???