Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5836) Expression Attributions Wiki
XB-ANAT-2

Papers associated with ectoderm∨derBy=4 (and vim)

Limit to papers also referencing gene:
Show all ectoderm∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


FGFR1 variants contributed to families with tooth agenesis., Yao S., Hum Genomics. October 13, 2023; 17 (1): 93.            


ADAM11 a novel regulator of Wnt and BMP4 signaling in neural crest and cancer., Pandey A., Front Cell Dev Biol. January 1, 2023; 11 1271178.                      


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.                          


Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis., Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.                      


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus., Martinez-De Luna RI., Dev Biol. June 15, 2017; 426 (2): 219-235.                      


Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure., Ray HJ., Development. April 1, 2016; 143 (7): 1192-204.


In silico and in vivo identification of the intermediate filament vimentin that is downregulated downstream of Brachyury during Xenopus embryogenesis., Yamada A., Gene. January 10, 2012; 491 (2): 232-6.


pTransgenesis: a cross-species, modular transgenesis resource., Love NR., Development. December 1, 2011; 138 (24): 5451-8.              


Role of Tbx2 in defining the territory of the pronephric nephron., Cho GS., Development. February 1, 2011; 138 (3): 465-74.                        


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Muscular dystrophy candidate gene FRG1 is critical for muscle development., Hanel ML., Dev Dyn. June 1, 2009; 238 (6): 1502-12.        


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Expression patterns of chick Musashi-1 in the developing nervous system., Wilson JM., Gene Expr Patterns. August 1, 2007; 7 (7): 817-25.            


Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration., Mescher AL., Dev Comp Immunol. January 1, 2007; 31 (4): 383-93.  


Post-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development., Tian Q., Development. August 1, 1999; 126 (15): 3371-80.                  


Neural development in the marsupial frog Gastrotheca riobambae., Del Pino EM., Int J Dev Biol. July 1, 1998; 42 (5): 723-31.


Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis., Lin W., Dev Biol. October 10, 1996; 179 (1): 197-211.            


Cloning of multiple forms of goldfish vimentin: differential expression in CNS., Glasgow E., J Neurochem. August 1, 1994; 63 (2): 470-81.


Assembly and structure of calcium-induced thick vimentin filaments., Hofmann I., Eur J Cell Biol. December 1, 1991; 56 (2): 328-41.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Developmental expression of a neurofilament-M and two vimentin-like genes in Xenopus laevis., Sharpe CR., Development. June 1, 1988; 103 (2): 269-77.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus., Franz JK., Proc Natl Acad Sci U S A. October 1, 1983; 80 (20): 6254-8.          

???pagination.result.page??? 1