Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4897) Expression Attributions Wiki
XB-ANAT-3713

Papers associated with left (and wee1)

Limit to papers also referencing gene:
Show all left papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation., Valverde JM., Nat Commun. October 9, 2023; 14 (1): 6316.                                      


Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators., Tan T., Mol Biol Cell. October 1, 2022; 33 (12): ar115.                                                      


Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era., Meneau F., Cells. June 19, 2020; 9 (6):             


An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia., Sandquist JC., J Cell Biol. March 5, 2018; 217 (3): 849-859.                


Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation., Charlesworth A., Dev Biol. September 15, 2012; 369 (2): 177-90.              


CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly., Moree B., J Cell Biol. September 19, 2011; 194 (6): 855-71.                            


In vitro centromere and kinetochore assembly on defined chromatin templates., Guse A., Nature. August 28, 2011; 477 (7364): 354-8.      


Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity., Sun L., PLoS One. January 1, 2011; 6 (11): e27928.            


Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation., El-Jouni W., Dev Biol. December 1, 2008; 324 (1): 99-107.        


Roles of Greatwall kinase in the regulation of cdc25 phosphatase., Zhao Y., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.                        


Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit., D'Angiolella V., PLoS One. February 28, 2007; 2 (2): e247.          


DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7., Yamada A., J Cell Biol. December 6, 2004; 167 (5): 841-9.              


Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation., Murakami MS., Development. February 1, 2004; 131 (3): 571-80.      


Multiple Cdk1 inhibitory kinases regulate the cell cycle during development., Leise W., Dev Biol. September 1, 2002; 249 (1): 156-73.                                        


The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition., Kang D., J Cell Biol. January 21, 2002; 156 (2): 249-59.                


Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts., Smith JJ., J Cell Biol. December 25, 2000; 151 (7): 1391-400.                


A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis., Kim SH., Dev Biol. August 15, 1999; 212 (2): 381-91.            

???pagination.result.page??? 1