Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3423) Expression Attributions Wiki
XB-ANAT-186

Papers associated with optic nerve (and pomc)

Limit to papers also referencing gene:
Show all optic nerve papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


Neurochemistry and plasticity of the median eminence and neural pituitary lobe in relation to background adaptation of Xenopus laevis., van Wijk DC., Ann N Y Acad Sci. April 1, 2009; 1163 524-7.


Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis., Scheenen WJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.


Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts., Kidane AH., Endocrinology. March 1, 2009; 150 (3): 1361-8.


In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor., de Groot DM., Mol Endocrinol. November 1, 2006; 20 (11): 2987-98.


Evidence for the role of adenosine 5'-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models., Omer S., Endocrinology. July 1, 2006; 147 (7): 3219-27.


Dietary exposure to Aroclor 1254 alters gene expression in Xenopus laevis frogs., Jelaso AM., Environ Res. May 1, 2005; 98 (1): 64-72.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Mutational analysis of evolutionarily conserved ACTH residues., Costa JL., Gen Comp Endocrinol. March 1, 2004; 136 (1): 12-6.


Ion transport across Xenopus alveolar epithelium is regulated by extracellular ATP, UTP and adenosine., Fronius M., Respir Physiol Neurobiol. January 15, 2004; 139 (2): 133-44.


Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist., Ignar DM., Peptides. May 1, 2003; 24 (5): 709-16.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Central control of melanotrope cells of Xenopus laevis., Tuinhof R., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.

???pagination.result.page??? 1