Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (320) Expression Attributions Wiki
XB-ANAT-203

Papers associated with axial mesoderm (and bcr)

Limit to papers also referencing gene:
Show all axial mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Capillarity and active cell movement at mesendoderm translocation in the Xenopus gastrula., Nagel M., Development. March 29, 2021; 148 (18):                                   


Furry is required for cell movements during gastrulation and functionally interacts with NDR1., Cervino AS., Sci Rep. March 23, 2021; 11 (1): 6607.                                  


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation., Luu O., J Cell Biol. March 16, 2015; 208 (6): 839-56.                    


EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula., Evren S., Development. October 1, 2014; 141 (19): 3649-61.                              


Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation., Hara Y., Dev Biol. October 15, 2013; 382 (2): 482-95.                  


PDGF-A controls mesoderm cell orientation and radial intercalation during Xenopus gastrulation., Damm EW., Development. February 1, 2011; 138 (3): 565-75.        


A calcium-binding motif in SPARC/osteonectin inhibits chordomesoderm cell migration during Xenopus laevis gastrulation: evidence of counter-adhesive activity in vivo., Huynh MH., Dev Growth Differ. August 1, 1999; 41 (4): 407-18.          


Evidence for the presence and participation of 85-75 KDa extracellular matrix components in cell interactions of Bufo arenarum gastrulation., Genta SB., J Exp Zool. February 15, 1997; 277 (3): 181-97.


Mesoderm migration in the Xenopus gastrula., Winklbauer R., Int J Dev Biol. February 1, 1996; 40 (1): 305-11.


Motile behavior and protrusive activity of migratory mesoderm cells from the Xenopus gastrula., Winklbauer R., Dev Biol. April 1, 1992; 150 (2): 335-51.


Mesodermal cell migration during Xenopus gastrulation., Winklbauer R., Dev Biol. November 1, 1990; 142 (1): 155-68.

???pagination.result.page??? 1