Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1723) Expression Attributions Wiki
XB-ANAT-233

Papers associated with cardiac mesoderm (and kcnj2)

Limit to papers also referencing gene:
Show all cardiac mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Class III antiarrhythmic drug dronedarone inhibits cardiac inwardly rectifying Kir2.1 channels through binding at residue E224., Xynogalos P., Naunyn Schmiedebergs Arch Pharmacol. December 1, 2014; 387 (12): 1153-61.


Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype., Ambrosini E., Hum Mol Genet. September 15, 2014; 23 (18): 4875-86.                      


A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1., Kokunai Y., Neurology. March 25, 2014; 82 (12): 1058-64.


Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants., Kobayashi T., PLoS One. January 1, 2011; 6 (12): e28208.            


Inhibition by cocaine of G protein-activated inwardly rectifying K+ channels expressed in Xenopus oocytes., Kobayashi T., Toxicol In Vitro. June 1, 2007; 21 (4): 656-64.


Functional and clinical characterization of a mutation in KCNJ2 associated with Andersen-Tawil syndrome., Lu CW., J Med Genet. August 1, 2006; 43 (8): 653-9.


Polymorphic ventricular tachycardia and KCNJ2 mutations., Chun TU., Heart Rhythm. July 1, 2004; 1 (2): 235-41.


Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac)., Kobayashi T., Br J Pharmacol. March 1, 2003; 138 (6): 1119-28.


Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome., Plaster NM., Cell. May 18, 2001; 105 (4): 511-9.


Molecular characterization of an inwardly rectifying K+ channel from HeLa cells., Klein H., J Membr Biol. January 1, 1999; 167 (1): 43-52.


Molecular and functional heterogeneity of inward rectifier potassium channels in brain and heart., Kurachi Y., J Card Fail. December 1, 1996; 2 (4 Suppl): S59-62.


Susceptibility of cloned K+ channels to reactive oxygen species., Duprat F., Proc Natl Acad Sci U S A. December 5, 1995; 92 (25): 11796-800.


Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart., Inagaki N., J Biol Chem. March 17, 1995; 270 (11): 5691-4.


Cloning and functional expression of an inwardly rectifying K+ channel from human atrium., Wible BA., Circ Res. March 1, 1995; 76 (3): 343-50.


Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1)., Tang W., Recept Channels. January 1, 1995; 3 (3): 175-83.


Molecular cloning and expression of a human heart inward rectifier potassium channel., Raab-Graham KF., Neuroreport. December 20, 1994; 5 (18): 2501-5.


Gating mechanism of the cloned inward rectifier potassium channel from mouse heart., Ishihara K., J Membr Biol. October 1, 1994; 142 (1): 55-64.


Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain., Takahashi N., J Biol Chem. September 16, 1994; 269 (37): 23274-9.


Cloning a novel human brain inward rectifier potassium channel and its functional expression in Xenopus oocytes., Tang W., FEBS Lett. July 18, 1994; 348 (3): 239-43.


Cloning and functional expression of a cardiac inward rectifier K+ channel., Ishii K., FEBS Lett. January 24, 1994; 338 (1): 107-11.


Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel., Kubo Y., Nature. August 26, 1993; 364 (6440): 802-6.

???pagination.result.page??? 1