Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3426) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and eomes)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT., Genesis. February 1, 2021; 59 (1-2): e23405.          


Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X., Genes (Basel). November 18, 2020; 11 (11):                   


Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms., McQueen C., Dev Biol. October 1, 2019; 454 (1): 74-84.                        


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. March 27, 2017; 11 24.                        


Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream., Huilgol D., Nat Neurosci. February 1, 2013; 16 (2): 157-65.    


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST., PLoS One. January 1, 2011; 6 (6): e20309.                  


Anuran olfactory bulb organization: embryology, neurochemistry and hodology., Moreno N., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.


Cloning and developmental expression of the soxB2 genes, sox14 and sox21, during Xenopus laevis embryogenesis., Cunningham DD., Int J Dev Biol. January 1, 2008; 52 (7): 999-1004.    


PP2A:B56epsilon is required for eye induction and eye field separation., Rorick AM., Dev Biol. February 15, 2007; 302 (2): 477-93.                  


Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development., Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.                        


Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning., Houston DW., Development. November 1, 2005; 132 (21): 4845-55.              


The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos., Callery EM., Dev Biol. February 15, 2005; 278 (2): 542-59.                              


Xenopus aristaless-related homeobox (xARX) gene product functions as both a transcriptional activator and repressor in forebrain development., Seufert DW., Dev Dyn. February 1, 2005; 232 (2): 313-24.                  


Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods., Brox A., J Comp Neurol. July 5, 2004; 474 (4): 562-77.                


Endogenous Cerberus activity is required for anterior head specification in Xenopus., Silva AC., Development. October 1, 2003; 130 (20): 4943-53.              


Defining pallial and subpallial divisions in the developing Xenopus forebrain., Bachy I., Mech Dev. September 1, 2002; 117 (1-2): 163-72.            


Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis., Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.                    


A novel mammalian T-box-containing gene, Tbr2, expressed in mouse developing brain., Kimura N., Brain Res Dev Brain Res. June 2, 1999; 115 (2): 183-93.


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    

???pagination.result.page??? 1