Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3426) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and slc7a5)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology., Barnum CE., Hum Mol Genet. July 29, 2020; 29 (12): 2076-2097.                        


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. February 1, 2019; 155 48-59.                


The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development., Siddam AD., PLoS Genet. March 1, 2018; 14 (3): e1007278.            


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D., Elife. April 7, 2017; 6                 


Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development., Auden A., Gene Expr Patterns. October 1, 2006; 6 (8): 964-70.          


Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality., Parrish M., Mol Cell Biol. August 1, 2004; 24 (16): 7102-12.


Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development., Latinkic BV., Development. February 1, 2004; 131 (3): 669-79.                    


SLC7A8, a gene mapping within the lysinuric protein intolerance critical region, encodes a new member of the glycoprotein-associated amino acid transporter family., Bassi MT., Genomics. December 1, 1999; 62 (2): 297-303.


A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis., Barbieri AM., Proc Natl Acad Sci U S A. September 14, 1999; 96 (19): 10729-34.            

???pagination.result.page??? 1