Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3430) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and sox11)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains., Marchak A., Dev Dyn. December 1, 2023; 252 (12): 1407-1427.                  


Influence of Sox protein SUMOylation on neural development and regeneration., Chang KC., Neural Regen Res. March 1, 2022; 17 (3): 477-481.      


Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System., Reverdatto S., BMC Genomics. January 4, 2022; 23 (1): 2.                      


Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM., Dis Model Mech. March 3, 2020; 13 (3):                                               


miR-199 plays both positive and negative regulatory roles in Xenopus eye development., Ritter RA., Genesis. March 1, 2020; 58 (3-4): e23354.                        


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH., Dev Biol. February 1, 2019; 446 (1): 68-79.                      


Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway., Pan Y., Dev Dyn. November 1, 2018; 247 (11): 1199-1210.                            


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome., Hempel A., J Med Genet. March 1, 2016; 53 (3): 152-62.          


Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation., Uy BR., Dev Biol. January 15, 2015; 397 (2): 282-92.                    


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST., PLoS One. January 1, 2011; 6 (6): e20309.                  


Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function., Roche DD., Dev Biol. September 1, 2009; 333 (1): 26-36.                              


Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          


Identification of neural genes using Xenopus DNA microarrays., Shin Y., Dev Dyn. February 1, 2005; 232 (2): 432-44.            


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Expression of sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development., de Martino S., Dev Dyn. March 1, 2000; 217 (3): 279-92.

???pagination.result.page??? 1