Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (716) Expression Attributions Wiki
XB-ANAT-463

Papers associated with pronephric kidney (and pcna)

Limit to papers also referencing gene:
Show all pronephric kidney papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T., Development. November 1, 2021; 148 (21):                                                                 


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


SLC20A1 Is Involved in Urinary Tract and Urorectal Development., Rieke JM., Front Cell Dev Biol. January 1, 2020; 8 567.                                


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


Simultaneous in vitro characterisation of DNA deaminase function and associated DNA repair pathways., Franchini DM., PLoS One. December 9, 2013; 8 (12): e82097.                


Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1., Movassagh M., Cardiovasc Res. August 1, 2008; 79 (3): 436-47.                                


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            

???pagination.result.page??? 1