Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (12667) Expression Attributions Wiki
XB-ANAT-175

Papers associated with nervous system (and ckb)

Limit to papers also referencing gene:
Show all nervous system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development., Owens ND., Cell Rep. January 26, 2016; 14 (3): 632-47.                                                  


Gene expression profiles of lens regeneration and development in Xenopus laevis., Malloch EL., Dev Dyn. September 1, 2009; 238 (9): 2340-56.                                    


Dynamic expression pattern of distinct genes in the presomitic and somitic mesoderm during Xenopus development., Bourdelas A., Int J Dev Biol. January 1, 2009; 53 (7): 1075-9.                                                    


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain., Reppert SM., Neuron. November 1, 1995; 15 (5): 1003-15.


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


Identification of vimentin and novel vimentin-related proteins in Xenopus oocytes and early embryos., Torpey NP., Development. December 1, 1990; 110 (4): 1185-95.            


Developmental expression of the creatine kinase isozyme system of Xenopus: maternally derived CK-IV isoform persists far beyond the degradation of its maternal mRNA and into the zygotic expression period., Robert J., Development. March 1, 1990; 108 (3): 507-14.

???pagination.result.page??? 1