Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6354) Expression Attributions Wiki
XB-ANAT-254

Papers associated with oocyte (and mt-tr)

Limit to papers also referencing gene:
Show all oocyte papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A Simplified Protocol to Incorporate the Fluorescent Unnatural Amino Acid ANAP into Xenopus laevis Oocyte-Expressed P2X7 Receptors., Durner A., Methods Mol Biol. January 1, 2022; 2510 193-216.


Lariat intronic RNAs in the cytoplasm of vertebrate cells., Talhouarne GJS., Proc Natl Acad Sci U S A. August 21, 2018; 115 (34): E7970-E7977.                        


Orthogonality of Pyrrolysine tRNA in the Xenopus oocyte., Infield DT., Sci Rep. March 26, 2018; 8 (1): 5166.              


A selectivity filter at the intracellular end of the acid-sensing ion channel pore., Lynagh T., Elife. May 12, 2017; 6                   


Cellular encoding of Cy dyes for single-molecule imaging., Leisle L., Elife. December 12, 2016; 5                     


A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning., Kırlı K., Elife. December 17, 2015; 4                     


Atomic basis for therapeutic activation of neuronal potassium channels., Kim RY., Nat Commun. September 3, 2015; 6 8116.                


Exportin-5 mediates nuclear export of SRP RNA in vertebrates., Takeiwa T., Genes Cells. April 1, 2015; 20 (4): 281-91.          


Incorporation of Non-Canonical Amino Acids., Leisle L., Adv Exp Med Biol. January 1, 2015; 869 119-51.


Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes., Malik MQ., J Biol Chem. December 19, 2014; 289 (51): 35468-81.                


Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages., Lee S., Proc Natl Acad Sci U S A. October 14, 2014; 111 (41): E4315-22.        


Pearls are novel Cajal body-like structures in the Xenopus germinal vesicle that are dependent on RNA pol III transcription., Nizami ZF., Chromosome Res. December 1, 2012; 20 (8): 953-69.


MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP., Truesdell SS., Sci Rep. January 1, 2012; 2 842.                


Cajal body surveillance of U snRNA export complex assembly., Suzuki T., J Cell Biol. August 23, 2010; 190 (4): 603-12.            


The 5'-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation., Vallejos M., Nucleic Acids Res. January 1, 2010; 38 (2): 618-32.            


Evidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytes., Claussen M., Development. September 1, 2004; 131 (17): 4263-73.            


VgRBP71 stimulates cleavage at a polyadenylation signal in Vg1 mRNA, resulting in the removal of a cis-acting element that represses translation., Kolev NG., Mol Cell. March 1, 2003; 11 (3): 745-55.              


Differential processing of the Xenopus ATP(CTP):tRNA nucleotidyltransferase mRNA., Keady BT., Biochem Biophys Res Commun. September 27, 2002; 297 (3): 573-80.        


Expression of the gene encoding the beta-amyloid precursor protein APP in Xenopus laevis., van den Hurk WH., Brain Res Mol Brain Res. December 16, 2001; 97 (1): 13-20.          


Internal modification of U2 small nuclear (sn)RNA occurs in nucleoli of Xenopus oocytes., Yu YT., J Cell Biol. March 19, 2001; 152 (6): 1279-88.              


Maximization of selenocysteine tRNA and U6 small nuclear RNA transcriptional activation achieved by flexible utilization of a Staf zinc finger., Schaub M., J Biol Chem. August 27, 1999; 274 (35): 25042-50.


A bayesian statistical algorithm for RNA secondary structure prediction., Ding Y., Comput Chem. June 15, 1999; 23 (3-4): 387-400.


A developmental pathway controlling outgrowth of the Xenopus tail bud., Beck CW., Development. April 1, 1999; 126 (8): 1611-20.                


Cloning of the Xenopus laevis aldolase C gene and analysis of its promoter function in developing Xenopus embryos and A6 cells., Yatsuki H., Biochim Biophys Acta. November 8, 1998; 1442 (2-3): 199-217.                              


Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity., Westmark CJ., Nucleic Acids Res. October 15, 1998; 26 (20): 4758-64.


Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins., Sparrow DB., Mech Dev. February 1, 1998; 71 (1-2): 151-63.            


Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes., Morin A., RNA. January 1, 1998; 4 (1): 24-37.


Selenocysteine tRNAs as central components of selenoprotein biosynthesis in eukaryotes., Park SI., Biomed Environ Sci. September 1, 1997; 10 (2-3): 116-24.


The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export., Saavedra C., Curr Biol. September 1, 1997; 7 (9): 619-28.


A novel class of RanGTP binding proteins., Görlich D., J Cell Biol. July 14, 1997; 138 (1): 65-80.                    


Visualizing nuclear export of different classes of RNA by electron microscopy., Panté N., RNA. May 1, 1997; 3 (5): 498-513.


Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis., Kume S., Dev Biol. February 15, 1997; 182 (2): 228-39.              


The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways., Powers MA., J Cell Biol. January 27, 1997; 136 (2): 241-50.            


RNA transport to the vegetal cortex of Xenopus oocytes., Zhou Y., Dev Biol. October 10, 1996; 179 (1): 173-83.            


The mRNA encoding a beta subunit of heterotrimeric GTP-binding proteins is localized to the animal pole of Xenopus laevis oocyte and embryos., Devic E., Mech Dev. October 1, 1996; 59 (2): 141-51.              


An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression., Saks ME., J Biol Chem. September 20, 1996; 271 (38): 23169-75.


Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture., Grosjean H., J Mol Biol. January 12, 1996; 255 (1): 67-85.


Developmental stage-specific regulation of Xenopus tRNA genes by an upstream promoter element., Reynolds WF., J Biol Chem. May 5, 1995; 270 (18): 10703-10.


Nuclear export pathways of tRNA and 40 S ribosomes include both common and specific intermediates., Pokrywka NJ., J Biol Chem. February 24, 1995; 270 (8): 3619-24.


Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease., Lin JJ., Biochem Biophys Res Commun. October 14, 1994; 204 (1): 156-62.


Role of maturation-promoting factor (p34cdc2-cyclin B) in differential expression of the Xenopus oocyte and somatic-type 5S RNA genes., Wolf VJ., Mol Cell Biol. July 1, 1994; 14 (7): 4704-11.


Base modification pattern at the wobble position of Xenopus selenocysteine tRNA(Sec)., Sturchler C., Nucleic Acids Res. April 25, 1994; 22 (8): 1354-8.


Minimum intron requirements for tRNA splicing and nuclear transport in Xenopus oocytes., Haselbeck RC., Biochemistry. August 24, 1993; 32 (33): 8575-81.


Proopiomelanocortin gene expression as a neural marker during the embryonic development of Xenopus laevis., Heideveld M., Differentiation. March 1, 1993; 52 (3): 195-200.        


Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily., Saxena SK., J Biol Chem. October 25, 1992; 267 (30): 21982-6.


Export of mRNA from microinjected nuclei of Xenopus laevis oocytes., Dargemont C., J Cell Biol. July 1, 1992; 118 (1): 1-9.


Differential expression of oocyte-type class III genes with fraction TFIIIC from immature or mature oocytes., Reynolds WF., Mol Cell Biol. March 1, 1992; 12 (3): 946-53.


The genes encoding the major 42S storage particle proteins are expressed in male and female germ cells of Xenopus laevis., Abdallah B., Development. November 1, 1991; 113 (3): 851-6.        


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A., Development. August 1, 1991; 112 (4): 933-43.            


Expression of a mRNA related to c-rel and dorsal in early Xenopus laevis embryos., Kao KR., Proc Natl Acad Sci U S A. April 1, 1991; 88 (7): 2697-701.      

???pagination.result.page??? 1 2 3 ???pagination.result.next???