Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6354) Expression Attributions Wiki
XB-ANAT-254

Papers associated with oocyte (and nav1)

Limit to papers also referencing gene:
Show all oocyte papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Low-Resistance silver bromide electrodes for recording fast ion channel kinetics under voltage clamp conditions., Ågren R., J Neurosci Methods. January 15, 2021; 348 108984.


Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels., Kawai T., J Biol Chem. January 1, 2021; 296 100783.                  


Uncoupling sodium channel dimers restores the phenotype of a pain-linked Nav 1.7 channel mutation., Rühlmann AH., Br J Pharmacol. October 1, 2020; 177 (19): 4481-4496.                          


Action potentials in Xenopus oocytes triggered by blue light., Walther F., J Gen Physiol. May 4, 2020; 152 (5):                               


Resurgent and Gating Pore Currents Induced by De Novo SCN2A Epilepsy Mutations., Mason ER., eNeuro. October 16, 2019; 6 (5):                   


A Xenopus oocyte model system to study action potentials., Corbin-Leftwich A., J Gen Physiol. November 5, 2018; 150 (11): 1583-1593.            


Biophysical characterization of the Varroa destructor NaV1 sodium channel and its affinity for τ-fluvalinate insecticide., Gosselin-Badaroudine P., FASEB J. July 1, 2017; 31 (7): 3066-3071.


Functional reconstitution of rat Nav1.6 sodium channels in vitro for studies of pyrethroid action., Soderlund DM., Neurotoxicology. May 1, 2017; 60 142-149.


Ultrasound modulates ion channel currents., Kubanek J., Sci Rep. April 26, 2016; 6 24170.                      


Binary architecture of the Nav1.2-β2 signaling complex., Das S., Elife. January 28, 2016; 5                     


Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells., Law R., Plant Physiol. October 15, 2015; 12 22.            


Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula., Chow CY., Toxins (Basel). June 30, 2015; 7 (7): 2494-513.                      


Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides., Gosselin-Badaroudine P., Sci Rep. January 12, 2015; 5 12475.                


Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels., Cristofori-Armstrong B., Sci Rep. January 12, 2015; 5 14763.                                


Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis., Mi W., J Gen Physiol. August 1, 2014; 144 (2): 137-45.        


Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder., Friedrich C., EMBO Mol Med. July 1, 2014; 6 (7): 937-51.              


Functional expression of Rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit., He B., PLoS One. January 1, 2014; 9 (1): e85188.        


Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase., Combs DJ., J Gen Physiol. October 1, 2013; 142 (4): 367-80.                    


Molecular mechanism of voltage sensing in voltage-gated proton channels., Gonzalez C., J Gen Physiol. March 1, 2013; 141 (3): 275-85.              


Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4., Silva JR., J Gen Physiol. March 1, 2013; 141 (3): 309-21.                


Intermediate state trapping of a voltage sensor., Lacroix JJ., J Gen Physiol. December 1, 2012; 140 (6): 635-52.                      


18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels., Du YM., Acta Pharmacol Sin. June 1, 2012; 33 (6): 752-60.            


Infrared light excites cells by changing their electrical capacitance., Shapiro MG., Nat Commun. March 13, 2012; 3 736.          


A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype., Gosselin-Badaroudine P., PLoS One. January 1, 2012; 7 (5): e38331.          


Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics., Arcisio-Miranda M., J Gen Physiol. November 1, 2010; 136 (5): 541-54.                


Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome., Gui J., PLoS One. June 7, 2010; 5 (6): e10985.              


Membrane trauma and Na+ leak from Nav1.6 channels., Wang JA., Am J Physiol Cell Physiol. October 1, 2009; 297 (4): C823-34.


The external pore loop interacts with S6 and S3-S4 linker in domain 4 to assume an essential role in gating control and anticonvulsant action in the Na(+) channel., Yang YC., J Gen Physiol. August 1, 2009; 134 (2): 95-113.                      


Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel., Zhang Y., Acta Physiol (Oxf). December 1, 2008; 194 (4): 311-23.            


A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore., Struyk AF., J Gen Physiol. July 1, 2007; 130 (1): 11-20.          


Modulatory effect of auxiliary beta1 subunit on Nav1.3 voltage-gated sodium channel expressed in Xenopus oocyte., Wang YW., Chin Med J (Engl). April 20, 2007; 120 (8): 721-3.

???pagination.result.page??? 1