Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (39) Expression Attributions Wiki
XB-ANAT-3774

Papers associated with optic disc

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA., Bellon A., Cell Rep. January 31, 2017; 18 (5): 1171-1186.                              


Tumor protein Tctp regulates axon development in the embryonic visual system., Roque CG., Development. April 1, 2016; 143 (7): 1134-48.                                  


Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye., Atkinson-Leadbeater K., Dev Dyn. May 1, 2014; .              


Islet-1 immunoreactivity in the developing retina of Xenopus laevis., Álvarez-Hernán G., ScientificWorldJournal. November 11, 2013; 2013 740420.              


E3 ligase Nedd4 promotes axon branching by downregulating PTEN., Drinjakovic J., Neuron. February 11, 2010; 65 (3): 341-57.                  


Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells., Hocking JC., Mech Dev. January 1, 2010; 127 (1-2): 36-48.        


LIMK1 acts downstream of BMP signaling in developing retinal ganglion cell axons but not dendrites., Hocking JC., Dev Biol. June 15, 2009; 330 (2): 273-85.                  


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma., Bosco A., Invest Ophthalmol Vis Sci. April 1, 2008; 49 (4): 1437-46.


Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model., Soto I., J Neurosci. January 9, 2008; 28 (2): 548-61.


Targeting of retinal axons requires the metalloproteinase ADAM10., Chen YY., J Neurosci. August 1, 2007; 27 (31): 8448-56.            


New views on retinal axon development: a navigation guide., Mann F., Int J Dev Biol. January 1, 2004; 48 (8-9): 957-64.        


Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis., Pollock NS., J Comp Neurol. October 28, 2002; 452 (4): 381-91.                


Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway., Shewan D., Nat Neurosci. October 1, 2002; 5 (10): 955-62.


GABA and development of the Xenopus optic projection., Ferguson SC., J Neurobiol. June 15, 2002; 51 (4): 272-84.              


Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina., Ohnuma S., Development. May 1, 2002; 129 (10): 2435-46.            


Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1., Höpker VH., Nature. September 2, 1999; 401 (6748): 69-73.


Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain., Hallonet M., Development. July 1, 1998; 125 (14): 2599-610.            


Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC., de la Torre JR., Neuron. December 1, 1997; 19 (6): 1211-24.


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Fast axonal diffusion of 3000 molecular weight dextran amines., Fritzsch B., J Neurosci Methods. October 1, 1993; 50 (1): 95-103.


Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study., Schütte M., J Comp Neurol. May 22, 1993; 331 (4): 482-94.


The morphological characterization and distribution of displaced ganglion cells in the anuran retina., Tóth P., Vis Neurosci. December 1, 1989; 3 (6): 551-61.


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


Healing and growth of half-eye "compound eyes" in Xenopus: application of an interspecific cell marker., O'Gorman S., J Neurosci. November 1, 1987; 7 (11): 3764-82.


Factors guiding optic fibers in developing Xenopus retina., Bork T., J Comp Neurol. October 8, 1987; 264 (2): 147-58.


Fibre organization and reorganization in the retinotectal projection of Xenopus., Taylor JS., Development. March 1, 1987; 99 (3): 393-410.


A physiological measure of shifting connections in the Rana pipiens retinotectal system., Fraser SE., J Embryol Exp Morphol. June 1, 1986; 94 149-61.


Fibre order in the normal Xenopus optic tract, near the chiasma., Fawcett JW., J Embryol Exp Morphol. October 1, 1984; 83 1-14.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: a morphological study utilizing intracellular dye injection., Sakaguchi DS., J Comp Neurol. April 1, 1984; 224 (2): 231-51.


Post-metamorphic retinal growth in Xenopus., Straznicky C., Anat Embryol (Berl). January 1, 1984; 169 (1): 103-9.


Development of the optic nerve in Xenopus laevis. I. Early development and organization., Cima C., J Embryol Exp Morphol. December 1, 1982; 72 225-49.


Anomalous axonal outgrowth at the retina caused by injury to the optic nerve or tectal ablation in adult Xenopus., Bohn RC., J Neurocytol. April 1, 1982; 11 (2): 211-34.


Disruption of optic fibre growth following eye rotation in Xenopus laevis embryos., Grant P., Nature. October 30, 1980; 287 (5785): 845-8.


Ontogeny of the retina and optic nerve in Xenopus laevis. II. Ontogeny of the optic fiber pattern in the retina., Grant P., J Comp Neurol. February 15, 1980; 189 (4): 671-98.


Anterograde and retrograde transport of horseradish peroxidase isoenzymes in the retino-tectal fibres of xenopus larvae., Giorgi PP., Neurosci Lett. November 1, 1978; 10 (1-2): 109-14.

???pagination.result.page??? 1