Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (423) Expression Attributions Wiki
XB-ANAT-543

Papers associated with skeletal system (and sox10)

Limit to papers also referencing gene:
Show all skeletal system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus., Godden AM., Dev Biol. March 1, 2022; 483 66-75.        


Function of chromatin modifier Hmgn1 during neural crest and craniofacial development., Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.              


Using Xenopus to analyze neurocristopathies like Kabuki syndrome., Schwenty-Lara J., Genesis. February 1, 2021; 59 (1-2): e23404.      


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. August 1, 2019; 9 (1): 11191.              


microRNAs associated with early neural crest development in Xenopus laevis., Ward NJ., BMC Genomics. January 18, 2018; 19 (1): 59.              


Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus., Bae CJ., Biochem Biophys Res Commun. January 15, 2018; 495 (3): 2257-2263.        


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL., Dev Biol. August 15, 2016; 416 (2): 361-72.                                    


Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome., Adams DS., J Physiol. June 15, 2016; 594 (12): 3245-70.                              


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures., Lours-Calet C., Dev Biol. June 15, 2014; 390 (2): 231-46.      


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene., Geng FS., Development. November 1, 2013; 140 (21): 4362-74.              


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages., Schmidt J., J Anat. February 1, 2011; 218 (2): 226-42.


Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells., Nie S., Dev Biol. November 1, 2009; 335 (1): 132-42.                        


Sox9 is required for invagination of the otic placode in mice., Barrionuevo F., Dev Biol. May 1, 2008; 317 (1): 213-24.          


Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development., Luo T., Development. April 1, 2007; 134 (7): 1279-89.      


The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish., Montero-Balaguer M., Dev Dyn. December 1, 2006; 235 (12): 3199-212.      

???pagination.result.page??? 1