Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and socs3)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S., Dev Biol. March 15, 2019; 447 (2): 200-213.                                  


Comparisons of SOCS mRNA and protein levels in Xenopus provide insights into optic nerve regenerative success., Priscilla R., Brain Res. February 1, 2019; 1704 150-160.          


To eat or not to eat: ontogeny of hypothalamic feeding controls and a role for leptin in modulating life-history transition in amphibian tadpoles., Bender MC., Proc Biol Sci. March 28, 2018; 285 (1875):


Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus., Gentsch GE., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.                                            


Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis., Whitworth GB., Dev Biol. June 15, 2017; 426 (2): 360-373.              


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


Leptin Induces Mitosis and Activates the Canonical Wnt/β-Catenin Signaling Pathway in Neurogenic Regions of Xenopus Tadpole Brain., Bender MC., Front Endocrinol (Lausanne). January 1, 2017; 8 99.              


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          


Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor., Cui MY., Endocrinology. November 1, 2014; 155 (11): 4202-14.

???pagination.result.page??? 1