Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6354) Expression Attributions Wiki
XB-ANAT-254

Papers associated with oocyte (and eif4e)

Limit to papers also referencing gene:
Show all oocyte papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

FAX-RIC enables robust profiling of dynamic RNP complex formation in multicellular organisms in vivo., Na Y., Nucleic Acids Res. March 18, 2021; 49 (5): e28.            


The translational functions of embryonic poly(A)-binding protein during gametogenesis and early embryo development., Ozturk S., Mol Reprod Dev. November 1, 2019; 86 (11): 1548-1560.          


Novel functions of the ubiquitin-independent proteasome system in regulating Xenopus germline development., Hwang H., Development. April 23, 2019; 146 (8):                       


Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development., Peuchen EH., Sci Rep. November 15, 2017; 7 (1): 15647.                          


Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells., Kubacka D., PLoS One. January 1, 2013; 8 (8): e72761.                


KHDC1B is a novel CPEB binding partner specifically expressed in mouse oocytes and early embryos., Cai C., Mol Biol Cell. September 15, 2010; 21 (18): 3137-48.                  


Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eukaryotic translation initiation factor 4E in Tetrapoda., Evsikov AV., Dev Genes Evol. February 1, 2009; 219 (2): 111-8.


Translational control in early development: CPEB, P-bodies and germinal granules., Standart N., Biochem Soc Trans. August 1, 2008; 36 (Pt 4): 671-6.


Translational control by cytoplasmic polyadenylation in Xenopus oocytes., Radford HE., Biochim Biophys Acta. April 1, 2008; 1779 (4): 217-29.      


Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation., Weston A., Nucleic Acids Res. June 12, 2006; 34 (10): 3082-94.          


Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus., Barnard DC., Mol Cell Biol. September 1, 2005; 25 (17): 7605-15.                


The stem-loop binding protein stimulates histone translation at an early step in the initiation pathway., Gorgoni B., RNA. July 1, 2005; 11 (7): 1030-42.


Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation., Cao Q., EMBO J. July 15, 2002; 21 (14): 3852-62.


Inhibition of translation and progesterone-induced maturation of Xenopus oocytes by expressing the amino-terminal portion of the eukaryotic translation initiation factor 4G., Wakiyama M., Biosci Biotechnol Biochem. January 1, 2002; 66 (1): 185-7.


CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division., Groisman I., Cell. October 27, 2000; 103 (3): 435-47.        


Cap-dependent deadenylation of mRNA., Dehlin E., EMBO J. March 1, 2000; 19 (5): 1079-86.


Xenopus poly (A) binding protein maternal RNA is localized during oogenesis and associated with large complexes in blastula., Schroeder KE., Dev Genet. January 1, 1996; 19 (3): 268-76.          

???pagination.result.page??? 1