Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10392) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo (and tacc3)

Limit to papers also referencing gene:
Show all embryo papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Developmental regulation of cellular metabolism is required for intestinal elongation and rotation., Grzymkowski JK., Development. February 15, 2024; 151 (4):                                       


The translational functions of embryonic poly(A)-binding protein during gametogenesis and early embryo development., Ozturk S., Mol Reprod Dev. November 1, 2019; 86 (11): 1548-1560.          


Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A., Front Physiol. January 1, 2019; 10 431.                                          


The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M., Front Physiol. January 1, 2019; 10 817.                    


Xenopus TACC2 is a microtubule plus end-tracking protein that can promote microtubule polymerization during embryonic development., Rutherford EL., Mol Biol Cell. October 15, 2016; 27 (20): 3013-3020.                    


From meiosis to mitosis - the sperm centrosome defines the kinetics of spindle assembly after fertilization in Xenopus., Cavazza T., J Cell Sci. July 1, 2016; 129 (13): 2538-47.          


Xenopus TACC1 is a microtubule plus-end tracking protein that can regulate microtubule dynamics during embryonic development., Lucaj CM., Cytoskeleton (Hoboken). May 1, 2015; 72 (5): 225-34.          


TACC3 is a microtubule plus end-tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types., Nwagbara BU., Mol Biol Cell. November 1, 2014; 25 (21): 3350-62.                              


The nuclear experience of CPEB: implications for RNA processing and translational control., Lin CL., RNA. February 1, 2010; 16 (2): 338-48.


Spindle-localized CPE-mediated translation controls meiotic chromosome segregation., Eliscovich C., Nat Cell Biol. July 1, 2008; 10 (7): 858-65.


Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein., Jung MY., Mol Cell Biol. June 1, 2006; 26 (11): 4277-87.


The Xenopus TACC homologue, maskin, functions in mitotic spindle assembly., O'Brien LL., Mol Biol Cell. June 1, 2005; 16 (6): 2836-47.


Translational control: a cup half full., Macdonald PM., Curr Biol. April 6, 2004; 14 (7): R282-3.


TACC3 expression and localization in the murine egg and ovary., Hao Z., Mol Reprod Dev. November 1, 2002; 63 (3): 291-9.


A screen for co-factors of Six3., Tessmar K., Mech Dev. September 1, 2002; 117 (1-2): 103-13.                  


Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules., Giet R., J Cell Biol. February 4, 2002; 156 (3): 437-51.                


CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division., Groisman I., Cell. October 27, 2000; 103 (3): 435-47.        

???pagination.result.page??? 1