Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10392) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo (and prss1)

Limit to papers also referencing gene:
Show all embryo papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses., Ismail T., Ecotoxicol Environ Saf. January 1, 2024; 269 115820.                      


Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes., Neal SJ., J Exp Zool B Mol Dev Evol. October 13, 2023;             


A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis., Pokrovsky D., PLoS Biol. September 1, 2021; 19 (9): e3001377.                        


Endoplasmic reticulum transmembrane protein TMTC3 contributes to O-mannosylation of E-cadherin, cellular adherence, and embryonic gastrulation., Graham JB., Mol Biol Cell. February 1, 2020; 31 (3): 167-183.                                      


PAWS1 controls Wnt signalling through association with casein kinase 1α., Bozatzi P., EMBO Rep. April 1, 2018; 19 (4):                             


Folate-dependent methylation of septins governs ciliogenesis during neural tube closure., Toriyama M., FASEB J. August 1, 2017; 31 (8): 3622-3635.                    


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling., Herhaus L., Open Biol. May 1, 2014; 4 (5): 140065.              


Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development., Sun L., Sci Rep. February 26, 2014; 4 4365.                              


A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit., Manes G., PLoS One. January 1, 2014; 9 (4): e95768.            


Cell-cycle dependent localization of MELK and its new partner RACK1 in epithelial versus mesenchyme-like cells in Xenopus embryo., Chartrain I., Biol Open. August 21, 2013; 2 (10): 1037-48.                


A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis., Chen X., PLoS One. December 22, 2009; 4 (12): e8411.                    


Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules., Scardigli R., PLoS One. June 18, 2008; 3 (6): e2471.                    


LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin., Cselenyi CS., Proc Natl Acad Sci U S A. June 10, 2008; 105 (23): 8032-7.        


The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo., Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.                      


TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis., Ogata S., Genes Dev. July 15, 2007; 21 (14): 1817-31.                  


Dissection of Tightly Adhering Xenopus laevis Tissues by Trypsin Treatment., Sive HL., CSH Protoc. June 1, 2007; 2007 pdb.prot4752.


Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity., Chen X., J Cell Biol. July 17, 2006; 174 (2): 301-13.                


Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo., Williams PH., Curr Biol. November 9, 2004; 14 (21): 1916-23.      


NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin., Eilbracht J., Mol Biol Cell. April 1, 2004; 15 (4): 1816-32.                            


Properties of the hatching enzyme from Xenopus laevis., Fan TJ., Eur J Biochem. September 1, 2001; 268 (18): 4892-8.


Xoom is maternally stored and functions as a transmembrane protein for gastrulation movement in Xenopus embryos., Hasegawa K., Dev Growth Differ. February 1, 2001; 43 (1): 25-31.            


Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., Ishizuya-Oka A., J Cell Biol. September 4, 2000; 150 (5): 1177-88.                      


Isolation and characterization of three novel serine protease genes from Xenopus laevis., Yamada K., Gene. July 11, 2000; 252 (1-2): 209-16.        


A constitutively activated mutant of galphaq down-regulates EP-cadherin expression and decreases adhesion between ectodermal cells at gastrulation., Rizzoti K., Mech Dev. August 1, 1998; 76 (1-2): 19-31.                


Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system., Ulitzur N., Mol Biol Cell. August 1, 1997; 8 (8): 1439-48.


Characterization of pNiXa, a serpin of Xenopus laevis oocytes and embryos, and its histidine-rich, Ni(II)-binding domain., Sunderman FW., Mol Reprod Dev. August 1, 1996; 44 (4): 507-24.


Characterization of the Xenopus rhodopsin gene., Batni S., J Biol Chem. February 9, 1996; 271 (6): 3179-86.              


Differential expression of two cadherins in Xenopus laevis., Angres B., Development. March 1, 1991; 111 (3): 829-44.                    


Differential association of endogenous proenkephalin-derived peptides with membranes of microsomes from rat striatum, adrenal medulla and heart ventricle., Vindrola O., J Mol Endocrinol. October 1, 1990; 5 (2): 175-83.


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


A ventrally localized inhibitor of melanization in Xenopus laevis skin., Fukuzawa T., Dev Biol. September 1, 1988; 129 (1): 25-36.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


A mesoderm-inducing factor is produced by Xenopus cell line., Smith JC., Development. January 1, 1987; 99 (1): 3-14.              


Differential response of embryonic cells to culture on tissue matrices., Overton J., Tissue Cell. January 1, 1979; 11 (1): 89-98.

???pagination.result.page??? 1