Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (235) Expression Attributions Wiki
XB-ANAT-3742

Papers associated with neural progenitor cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles., Huang LC., Proc Natl Acad Sci U S A. January 16, 2024; 121 (3): e2316542121.                        


A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation., Valverde JM., Nat Commun. October 9, 2023; 14 (1): 6316.                                      


Differential nuclear import sets the timing of protein access to the embryonic genome., Nguyen T., Nat Commun. October 6, 2022; 13 (1): 5887.                                  


8 Å structure of the outer rings of the Xenopus laevis nuclear pore complex obtained by cryo-EM and AI., Tai L., Protein Cell. October 1, 2022; 13 (10): 760-777.                                                                        


Nuclear F-actin and Lamin A antagonistically modulate nuclear shape., Mishra S., J Cell Sci. July 1, 2022; 135 (13):                             


Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex., Zhu X., Science. June 10, 2022; 376 (6598): eabl8280.


Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold., Fontana P., Science. June 10, 2022; 376 (6598): eabm9326.


Cryo-EM structure of the inner ring from the Xenopus laevis nuclear pore complex., Huang G., Cell Res. May 1, 2022; 32 (5): 451-460.                                              


Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex., Huang G., Cell Res. April 1, 2022; 32 (4): 349-358.


Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


Scanning Electron Microscopy (SEM) and Immuno-SEM of Nuclear Pore Complexes from Amphibian Oocytes, Mammalian Cell Cultures, Yeast, and Plants., Goldberg MW., Methods Mol Biol. January 1, 2022; 2502 417-437.


Visualizing Nuclear Pore Complexes in Xenopus Egg Extracts., Mishra S., Methods Mol Biol. January 1, 2022; 2502 395-405.


The nucleoporin Nup50 activates the Ran guanine nucleotide exchange factor RCC1 to promote NPC assembly at the end of mitosis., Holzer G., EMBO J. December 1, 2021; 40 (23): e108788.                  


ZC3HC1 Is a Novel Inherent Component of the Nuclear Basket, Resident in a State of Reciprocal Dependence with TPR., Gunkel P., Cells. July 30, 2021; 10 (8):               


Nucleoporin NUP205 plays a critical role in cilia and congenital disease., Marquez J., Dev Biol. January 1, 2021; 469 46-53.                        


Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis)., Xu C., Sci Rep. November 18, 2020; 10 (1): 20122.                


DNA content contributes to nuclear size control in Xenopus laevis., Heijo H., Mol Biol Cell. November 15, 2020; 31 (24): 2703-2717.                


The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos., Mukherjee RN., Dev Cell. August 10, 2020; 54 (3): 395-409.e7.    


Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex., Zhang Y., Cell Res. June 1, 2020; 30 (6): 532-540.                                


Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis., Huang G., Cell Res. June 1, 2020; 30 (6): 520-531.                                    


Chromatin accessibility dynamics and single cell RNA-Seq reveal new regulators of regeneration in neural progenitors., Kakebeen AD., Elife. April 27, 2020; 9                             


Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume., Chen P., J Cell Biol. December 2, 2019; 218 (12): 4063-4078.            


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR., Development. October 24, 2019; 146 (20):             


Nanoscale electrostatic gating of molecular transport through nuclear pore complexes as probed by scanning electrochemical microscopy., Pathirathna P., Chem Sci. September 14, 2019; 10 (34): 7929-7936.            


Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome., Braun DA., J Clin Invest. October 1, 2018; 128 (10): 4313-4328.


Laminopathies: what can humans learn from fruit flies., Pałka M., Cell Mol Biol Lett. July 6, 2018; 23 32.    


C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis., Moore KB., Dev Biol. May 1, 2018; 437 (1): 27-40.                  


MicroRNA-31 is required for astrocyte specification., Meares GP., Glia. May 1, 2018; 66 (5): 987-998.


A self-inhibitory interaction within Nup155 and membrane binding are required for nuclear pore complex formation., De Magistris P., J Cell Sci. January 4, 2018; 131 (1):             


Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings., Otsuka S., Nat Struct Mol Biol. January 1, 2018; 25 (1): 21-28.


RNAs coordinate nuclear envelope assembly and DNA replication through ELYS recruitment to chromatin., Aze A., Nat Commun. December 14, 2017; 8 (1): 2130.            


Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy., Sellés J., Sci Rep. November 7, 2017; 7 (1): 14732.      


Karyopherins regulate nuclear pore complex barrier and transport function., Kapinos LE., J Cell Biol. November 6, 2017; 216 (11): 3609-3624.                  


In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain., Lau M., eNeuro. July 31, 2017; 4 (4):                           


The Nup62 Coiled-Coil Motif Provides Plasticity for Triple-Helix Bundle Formation., Dewangan PS., Biochemistry. June 6, 2017; 56 (22): 2803-2811.


PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells., Edens LJ., Mol Biol Cell. May 15, 2017; 28 (10): 1389-1399.          


AFM visualization of sub-50nm polyplex disposition to the nuclear pore complex without compromising the integrity of the nuclear envelope., Andersen H., J Control Release. December 28, 2016; 244 (Pt A): 24-29.


Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia., Del Viso F., Dev Cell. September 12, 2016; 38 (5): 478-92.                        


Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy., Sakiyama Y., Nat Nanotechnol. August 1, 2016; 11 (8): 719-23.


Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome., Braun DA., Nat Genet. April 1, 2016; 48 (4): 457-65.        


Insights into the gate of the nuclear pore complex., Zwerger M., Nucleus. January 1, 2016; 7 (1): 1-7.


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells., Jevtić P., J Biol Chem. November 13, 2015; 290 (46): 27557-71.              


Crystal structure of the metazoan Nup62•Nup58•Nup54 nucleoporin complex., Chug H., Science. October 2, 2015; 350 (6256): 106-10.


Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly., Vollmer B., Dev Cell. June 22, 2015; 33 (6): 717-28.              


Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins., Hardwick LJ., Neural Dev. June 18, 2015; 10 15.                  


Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., Domínguez L., Neuroscience. April 2, 2015; 290 61-79.  


Structure and gating of the nuclear pore complex., Eibauer M., Nat Commun. January 19, 2015; 6 7532.          


Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity., Schmidt HB., Elife. January 6, 2015; 4                                   


Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation., Pleiner T., Elife. January 6, 2015; 4 e11349.                

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???