Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3316) Expression Attributions Wiki
XB-ANAT-492

Papers associated with surface structure (and ins)

Limit to papers also referencing gene:
Show all surface structure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Amphibian host-defense peptides with potential for Type 2 diabetes therapy - an updated review., Conlon JM., Peptides. May 1, 2024; 175 171180.  


Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides., Chen X., Toxins (Basel). October 21, 2022; 14 (10):   


Beneficial actions of the [A14K] analog of the frog skin peptide PGLa-AM1 in mice with obesity and degenerative diabetes: A mechanistic study., Musale V., Peptides. February 1, 2021; 136 170472.


Actions of PGLa-AM1 and its [A14K] and [A20K] analogues and their therapeutic potential as anti-diabetic agents., Owolabi BO., Biochimie. July 1, 2017; 138 1-12.


Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients., Nakayama T., Dev Biol. December 15, 2015; 408 (2): 328-44.                              


Magainin-related peptides stimulate insulin-release and improve glucose tolerance in high fat fed mice., Ojo OO., Protein Pept Lett. January 1, 2014; 22 (3): 256-63.


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification., Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.                  


Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents., Srinivasan D., Biochimie. February 1, 2013; 95 (2): 429-35.


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.    


Xenopus laevis insulin receptor substrate IRS-1 is important for eye development., Bugner V., Dev Dyn. July 1, 2011; 240 (7): 1705-15.            


Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae)., Zahid OK., Gen Comp Endocrinol. June 1, 2011; 172 (2): 314-20.


Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes., Pearl EJ., Dev Biol. March 1, 2011; 351 (1): 135-45.                    


Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs., Borchers A., Genes (Basel). November 18, 2010; 1 (3): 413-26.      


Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): molecular characterization, tissue expression and DNA protection activity of its recombinant protein., De Zoysa M., Comp Biochem Physiol B Biochem Mol Biol. April 1, 2008; 149 (4): 630-9.


Characterization of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish, Danio rerio., Shih LJ., Gene Expr Patterns. February 1, 2007; 7 (4): 452-60.                


Expression analysis of IGFBP-rP10, IGFBP-like and Mig30 in early Xenopus development., Kuerner KM., Dev Dyn. October 1, 2006; 235 (10): 2861-7.                                          


Hormonal regulation of the epithelial Na+ channel: from amphibians to mammals., Shane MA., Gen Comp Endocrinol. May 15, 2006; 147 (1): 85-92.


Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex., Mercurio S., Development. May 1, 2004; 131 (9): 2137-47.                    


Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signalling., Latinkic BV., Development. June 1, 2003; 130 (11): 2429-41.        


The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus., Richard-Parpaillon L., Dev Biol. April 15, 2002; 244 (2): 407-17.                    


Neural and head induction by insulin-like growth factor signals., Pera EM., Dev Cell. November 1, 2001; 1 (5): 655-65.    


Up-regulation of putative hyaluronan synthase mRNA by basic fibroblast growth factor and insulin-like growth factor-1 in human skin fibroblasts., Kuroda K., J Dermatol Sci. June 1, 2001; 26 (2): 156-60.


Downregulation of Hedgehog signaling is required for organogenesis of the small intestine in Xenopus., Zhang J., Dev Biol. January 1, 2001; 229 (1): 188-202.                  


In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid., Moriya N., Dev Growth Differ. December 1, 2000; 42 (6): 593-602.


The role of maternal VegT in establishing the primary germ layers in Xenopus embryos., Zhang J., Cell. August 21, 1998; 94 (4): 515-24.                


Expression of Na(+)-K(+)-ATPase in the brown trout, Salmo trutta: in vivo modulation by hormones and seawater., Madsen SS., Am J Physiol. December 1, 1995; 269 (6 Pt 2): R1339-45.


Isolation, characterization, and in vitro culture of larval and adult epidermal cells of the frog Xenopus laevis., Nishikawa A., In Vitro Cell Dev Biol. December 1, 1990; 26 (12): 1128-34.


Hormone action in newt limb regeneration: insulin and endorphins., Vethamany-Globus S., Biochem Cell Biol. August 1, 1987; 65 (8): 730-8.

???pagination.result.page??? 1