Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6624) Expression Attributions Wiki
XB-ANAT-718

Papers associated with anatomical region (and myog)

Limit to papers also referencing gene:
Show all anatomical region papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Common features of cartilage maturation are not conserved in an amphibian model., Nguyen JKB., Dev Dyn. November 1, 2023; 252 (11): 1375-1390.                


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.          


Id genes are essential for early heart formation., Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                


Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone., Tamura K., J Mol Endocrinol. June 1, 2015; 54 (3): 185-92.


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation., Yamane H., In Vitro Cell Dev Biol Anim. August 1, 2013; 49 (7): 524-36.


Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B., Dev Dyn. May 1, 2012; 241 (5): 995-1007.                                    


Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae., Rodrigues AM., BMC Dev Biol. February 27, 2012; 12 9.                  


Characteristics of initiation and early events for muscle development in the Xenopus limb bud., Satoh A., Dev Dyn. December 1, 2005; 234 (4): 846-57.            


Myocardin is sufficient and necessary for cardiac gene expression in Xenopus., Small EM., Development. March 1, 2005; 132 (5): 987-97.            


Specific activation of the acetylcholine receptor subunit genes by MyoD family proteins., Charbonnier F., J Biol Chem. August 29, 2003; 278 (35): 33169-74.          


Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm., Yang J., Mech Dev. July 1, 2002; 115 (1-2): 79-89.              


Hes6 regulates myogenic differentiation., Cossins J., Development. May 1, 2002; 129 (9): 2195-207.          


Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes., Charbonnier F., J Biol Chem. January 11, 2002; 277 (2): 1139-47.              


Expression of the myogenic gene MRF4 during Xenopus development., Jennings CG., Dev Biol. May 1, 1992; 151 (1): 319-32.            

???pagination.result.page??? 1