Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5836) Expression Attributions Wiki
XB-ANAT-2

Papers associated with ectoderm∨derBy=4 (and gal.2)

Limit to papers also referencing gene:
Show all ectoderm∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Symmetry breakage in the frog Xenopus: role of Rab11 and the ventral-right blastomere., Tingler M., Genesis. June 1, 2014; 52 (6): 588-99.            


A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis., Dubaissi E., Development. April 1, 2014; 141 (7): 1514-25.                                


PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos., Yoon J., Mol Cells. March 1, 2014; 37 (3): 220-5.        


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


NumbL is essential for Xenopus primary neurogenesis., Nieber F., BMC Dev Biol. October 14, 2013; 13 36.                          


Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling., Bates TJ., Development. October 1, 2013; 140 (20): 4177-81.              


The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1., Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.                      


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity., Escobedo N., Development. July 1, 2013; 140 (14): 3008-17.            


Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes., Klein SL., PLoS One. April 4, 2013; 8 (4): e61845.                  


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling., Gibb N., Development. April 1, 2013; 140 (7): 1537-49.                                    


Rab GTPases are required for early orientation of the left-right axis in Xenopus., Vandenberg LN., Mech Dev. January 1, 2013; 130 (4-5): 254-71.                      


Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development., Xu Y, Xu Y., Cell. December 7, 2012; 151 (6): 1200-13.                


Exons 5-15 of kazrin are dispensable for murine epidermal morphogenesis and homeostasis., Chhatriwala MK., J Invest Dermatol. August 1, 2012; 132 (8): 1977-87.            


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation., Elkouby YM., Development. April 1, 2012; 139 (8): 1487-97.                    


Short chain dehydrogenase/reductase rdhe2 is a novel retinol dehydrogenase essential for frog embryonic development., Belyaeva OV., J Biol Chem. March 16, 2012; 287 (12): 9061-71.              


The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus., Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.                      


Mortality and morbidity in African clawed frogs (Xenopus laevis) associated with construction noise and vibrations., Felt SA., J Am Assoc Lab Anim Sci. March 1, 2012; 51 (2): 253-6.


Hyaluronan is required for cranial neural crest cells migration and craniofacial development., Casini P., Dev Dyn. February 1, 2012; 241 (2): 294-302.              


Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway., Fujimi TJ., Dev Biol. January 15, 2012; 361 (2): 220-31.                          


The LIM adaptor protein LMO4 is an essential regulator of neural crest development., Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.              


Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus., Beyer T., Curr Biol. January 10, 2012; 22 (1): 33-9.                


Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation., Stubbs JL., Nat Cell Biol. January 8, 2012; 14 (2): 140-7.            


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus., Xu S., PLoS Biol. January 1, 2012; 10 (3): e1001286.                                    


xCOUP-TF-B regulates xCyp26 transcription and modulates retinoic acid signaling for anterior neural patterning in Xenopus., Tanibe M., Int J Dev Biol. January 1, 2012; 56 (4): 239-44.            


Bmp indicator mice reveal dynamic regulation of transcriptional response., Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.                


mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells., Miyazaki A., PLoS One. January 1, 2012; 7 (10): e46630.        


The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis., Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.              


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


Gsx transcription factors repress Iroquois gene expression., Winterbottom EF., Dev Dyn. June 1, 2011; 240 (6): 1422-9.        


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.                                                          


A constitutive pan-hexose permease for the Plasmodium life cycle and transgenic models for screening of antimalarial sugar analogs., Blume M., FASEB J. April 1, 2011; 25 (4): 1218-29.


The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements., Park EC., Dev Biol. February 15, 2011; 350 (2): 441-50.                          


Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration., Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.                      


Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway., Blackiston D., Dis Model Mech. January 1, 2011; 4 (1): 67-85.                


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW., Development. January 1, 2011; 138 (1): 33-44.                    


Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis., Kinoshita T., Int J Dev Biol. January 1, 2011; 55 (1): 25-31.          


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST., PLoS One. January 1, 2011; 6 (6): e20309.                  


Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus., Kaufmann LT., Mech Dev. January 1, 2011; 128 (7-10): 401-11.                      


HDAC activity is required during Xenopus tail regeneration., Tseng AS., PLoS One. January 1, 2011; 6 (10): e26382.              


Hes6 is required for the neurogenic activity of neurogenin and NeuroD., Murai K., PLoS One. January 1, 2011; 6 (11): e27880.              


The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development., Neant I., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.        


Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1., Schneider M., Development. December 1, 2010; 137 (23): 4073-81.                        


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling., Maghzal N., J Cell Biol. November 1, 2010; 191 (3): 645-59.                


Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis., Tazumi S., Dev Biol. October 15, 2010; 346 (2): 170-80.                                

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???