Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5836) Expression Attributions Wiki
XB-ANAT-2

Papers associated with ectoderm∨derBy=4 (and myh6)

Limit to papers also referencing gene:
Show all ectoderm∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Inducible and tissue-specific cell labeling in Cre-ERT2 transgenic Xenopus lines., Lin TY., Dev Growth Differ. June 1, 2022; 64 (5): 243-253.        


Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians., Shook DR., Elife. April 11, 2022; 11                                     


A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis., Pokrovsky D., PLoS Biol. September 1, 2021; 19 (9): e3001377.                        


Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis)., Xu C., Sci Rep. November 18, 2020; 10 (1): 20122.                


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C., Development. February 5, 2020; 147 (3):                                     


Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography., Deniz E., Sci Rep. February 14, 2017; 7 42506.          


A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts., Tanaka HV., Nat Commun. January 12, 2016; 7 11069.        


A thioredoxin fold protein Sh3bgr regulates Enah and is necessary for proper sarcomere formation., Jang DG., Dev Biol. September 1, 2015; 405 (1): 1-9.                                    


Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4., Gallagher JM., Mech Dev. November 1, 2014; 134 31-41.            


Cyclin D2 is a GATA4 cofactor in cardiogenesis., Yamak A., Proc Natl Acad Sci U S A. January 28, 2014; 111 (4): 1415-20.          


Epithelial cell division in the Xenopus laevis embryo during gastrulation., Hatte G., Int J Dev Biol. January 1, 2014; 58 (10-12): 775-81.              


TBX3 Directs Cell-Fate Decision toward Mesendoderm., Weidgang CE., Stem Cell Reports. August 29, 2013; 1 (3): 248-65.                


Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians., Edholm ES., Proc Natl Acad Sci U S A. August 27, 2013; 110 (35): 14342-7.          


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis., Nedelkovska H., Biol Open. March 15, 2013; 2 (3): 335-42.                


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH., Dev Dyn. February 1, 2013; 242 (2): 164-78.                            


Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus., Smith SJ., Mech Dev. January 1, 2011; 128 (5-6): 303-15.                            


Comparative in vivo study of gp96 adjuvanticity in the frog Xenopus laevis., Nedelkovska H., J Vis Exp. September 3, 2010; (43):


Long-term consequences of Sox9 depletion on inner ear development., Park BY., Dev Dyn. April 1, 2010; 239 (4): 1102-12.          


FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis., Schuff M., Dev Biol. January 15, 2010; 337 (2): 259-73.                  


Neural ectoderm-secreted FGF initiates the expression of Nkx2.5 in cardiac progenitors via a p38 MAPK/CREB pathway., Keren-Politansky A., Dev Biol. November 15, 2009; 335 (2): 374-84.            


Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros., Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.                                  


The keratin-related Ouroboros proteins function as immune antigens mediating tail regression in Xenopus metamorphosis., Mukaigasa K., Proc Natl Acad Sci U S A. October 27, 2009; 106 (43): 18309-14.      


Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis., Gessert S., Dev Biol. October 15, 2009; 334 (2): 395-408.          


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB., Rolo A., Dev Biol. March 15, 2009; 327 (2): 327-38.    


Induction and modulation of smooth muscle differentiation in Xenopus embryonic cells., Barillot W., Dev Dyn. November 1, 2008; 237 (11): 3373-86.  


GATA transcription factors integrate Wnt signalling during heart development., Afouda BA., Development. October 1, 2008; 135 (19): 3185-90.        


DM-GRASP/ALCAM/CD166 is required for cardiac morphogenesis and maintenance of cardiac identity in first heart field derived cells., Gessert S., Dev Biol. September 1, 2008; 321 (1): 150-61.            


Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1., Movassagh M., Cardiovasc Res. August 1, 2008; 79 (3): 436-47.                                


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation., Robert J., J Immunol. March 1, 2008; 180 (5): 3176-82.


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis., Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.                            


In vivo study of T-cell responses to skin alloantigens in Xenopus using a novel whole-mount immunohistology method., Ramanayake T., Transplantation. January 27, 2007; 83 (2): 159-66.


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


Xtn3 is a developmentally expressed cardiac and skeletal muscle-specific novex-3 titin isoform., Brown DD., Gene Expr Patterns. October 1, 2006; 6 (8): 913-8.          


Genetic screens for mutations affecting development of Xenopus tropicalis., Goda T., PLoS Genet. June 1, 2006; 2 (6): e91.                        


SOX7 and SOX18 are essential for cardiogenesis in Xenopus., Zhang C., Dev Dyn. December 1, 2005; 234 (4): 878-91.                    


Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus., Garriock RJ., Dev Biol. March 1, 2005; 279 (1): 179-92.          


Myocardin is sufficient and necessary for cardiac gene expression in Xenopus., Small EM., Development. March 1, 2005; 132 (5): 987-97.            


Myogenic regulatory factors: redundant or specific functions? Lessons from Xenopus., Chanoine C., Dev Dyn. December 1, 2004; 231 (4): 662-70.  


Phylogenetic conservation of gp96-mediated antigen-specific cellular immunity: new evidence from adoptive cell transfer in xenopus., Maniero GD., Transplantation. November 27, 2004; 78 (10): 1415-21.


Inhibition of the cell cycle is required for convergent extension of the paraxial mesoderm during Xenopus neurulation., Leise WF., Development. April 1, 2004; 131 (8): 1703-15.              


Amphibian in vitro heart induction: a simple and reliable model for the study of vertebrate cardiac development., Ariizumi T., Int J Dev Biol. September 1, 2003; 47 (6): 405-10.      


Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: partial characterization and implication in metamorphosis., Izutsu Y., Dev Growth Differ. December 1, 2002; 44 (6): 477-88.            


Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins., Robert J., J Immunol. February 15, 2002; 168 (4): 1697-703.


Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes., Charbonnier F., J Biol Chem. January 11, 2002; 277 (2): 1139-47.              


MHC-restricted and -unrestricted CD8 T cells: an evolutionary perspective., Rau L., Transplantation. December 15, 2001; 72 (11): 1830-5.


The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    

???pagination.result.page??? 1 2 ???pagination.result.next???