Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2164) Expression Attributions Wiki
XB-ANAT-524

Papers associated with posterior∨derBy=4 (and rpe)

Limit to papers also referencing gene:
Show all posterior∨derBy=4 papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development., Kuriyama S., Dev Growth Differ. February 1, 2023; 65 (2): 109-119.                


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects., Marquez J., J Clin Invest. February 3, 2020; 130 (2): 813-826.                                


Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration., Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.                              


Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development., Shin JY., PLoS One. July 30, 2019; 14 (7): e0219800.                      


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. February 1, 2019; 155 48-59.                


Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms., Kha CX., Front Physiol. January 1, 2019; 10 502.                


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T., Development. October 26, 2018; 145 (20):                                     


A multichannel computer-driven system to raise aquatic embryos under selectable hypoxic conditions., Metikala S., Hypoxia (Auckl). January 12, 2018; 6 1-9.      


An atlas of Wnt activity during embryogenesis in Xenopus tropicalis., Borday C., PLoS One. January 1, 2018; 13 (4): e0193606.                


Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways., Sigg MA., Dev Cell. December 18, 2017; 43 (6): 744-762.e11.      


Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos., Park DS., Mol Cells. November 30, 2017; 40 (11): 823-827.    


Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus., Martinez-De Luna RI., Dev Biol. June 15, 2017; 426 (2): 219-235.                      


Frizzled 3 acts upstream of Alcam during embryonic eye development., Seigfried FA., Dev Biol. June 1, 2017; 426 (1): 69-83.                        


Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia., Del Viso F., Dev Cell. September 12, 2016; 38 (5): 478-92.                        


Noggin 1 overexpression in retinal progenitors affects bipolar cell generation., Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.        


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE)., Giannaccini M., Int J Mol Sci. January 22, 2014; 15 (1): 1590-605.                


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Histology of plastic embedded amphibian embryos and larvae., Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.                                


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development., Neant I., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.        


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Cloning and expression analysis of the anterior parahox genes, Gsh1 and Gsh2 from Xenopus tropicalis., Illes JC., Dev Dyn. January 1, 2009; 238 (1): 194-203.                                


Expression patterns of chick Musashi-1 in the developing nervous system., Wilson JM., Gene Expr Patterns. August 1, 2007; 7 (7): 817-25.            


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Eye and neural defects associated with loss of GDF6., Hanel ML., BMC Dev Biol. June 6, 2006; 6 43.          


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina., Van Raay TJ., Neuron. April 7, 2005; 46 (1): 23-36.                        


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


A restrictive role for Hedgehog signalling during otic specification in Xenopus., Koebernick K., Dev Biol. August 15, 2003; 260 (2): 325-38.              


Eye regeneration at the molecular age., Del Rio-Tsonis K., Dev Dyn. February 1, 2003; 226 (2): 211-24.            


Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos., Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.            

???pagination.result.page??? 1