Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (24) Expression Attributions Wiki
XB-ANAT-3598

Papers associated with central canal

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis., Edwards-Faret G., J Comp Neurol. July 1, 2018; 526 (10): 1712-1732.


Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. February 1, 2017; 12 (2): 372-389.      


A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model., Borisyuk R., PLoS One. February 3, 2014; 9 (2): e89461.                


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C., Cilia. April 29, 2013; 2 (1): 12.                  


Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo., Mogi K., Fluids Barriers CNS. April 25, 2012; 9 9.          


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F., Mol Vis. March 23, 2011; 17 2956-69.                      


Contexts for dopamine specification by calcium spike activity in the CNS., Velázquez-Ulloa NA., J Neurosci. January 5, 2011; 31 (1): 78-88.                    


An evolving NGF-Hoxd1 signaling pathway mediates development of divergent neural circuits in vertebrates., Guo T., Nat Neurosci. January 1, 2011; 14 (1): 31-6.          


Localization of Kv2.2 protein in Xenopus laevis embryos and tadpoles., Gravagna NG., J Comp Neurol. October 10, 2008; 510 (5): 508-24.                        


Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis., Ramanathan S., Eur J Neurosci. October 1, 2006; 24 (7): 1907-22.                  


XCL-2 is a novel m-type calpain and disrupts morphogenetic movements during embryogenesis in Xenopus laevis., Cao Y., Dev Growth Differ. October 1, 2001; 43 (5): 563-71.              


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Floor plate and the subcommissural organ are the source of secretory compounds of related nature: comparative immunocytochemical study., Yulis CR., J Comp Neurol. March 2, 1998; 392 (1): 19-34.        


Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period., Moody SA., J Comp Neurol. January 8, 1996; 364 (2): 219-30.            


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


A nonrandom interneuronal pattern in the developing frog spinal cord., Heathcote RD., J Comp Neurol. February 15, 1993; 328 (3): 437-48.


Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


The morphology and distribution of 'Kolmer-Agduhr cells', a class of cerebrospinal-fluid-contacting neurons revealed in the frog embryo spinal cord by GABA immunocytochemistry., Dale N., Proc R Soc Lond B Biol Sci. November 23, 1987; 232 (1267): 193-203.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Development and differentiation of the brain ventricular system in tadpoles of Xenopus laeris (Daudin) (Amphibia, Anura)., Lametschwandtner A., Z Mikrosk Anat Forsch. January 1, 1983; 97 (2): 265-78.

???pagination.result.page??? 1