Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (710) Expression Attributions Wiki
XB-ANAT-7

Papers associated with otic vesicle (and mapk1)

Limit to papers also referencing gene:
Show all otic vesicle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB., iScience. September 15, 2023; 26 (9): 107665.                          


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms., Sipieter F., PLoS One. October 20, 2015; 10 (10): e0140924.          


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


Loss of Extended Synaptotagmins ESyt2 and ESyt3 does not affect mouse development or viability, but in vitro cell migration and survival under stress are affected., Herdman C., Cell Cycle. January 1, 2014; 13 (16): 2616-25.            


Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion., Moore R., Development. December 1, 2013; 140 (23): 4763-75.                                  


A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome., Rienhoff HY., Am J Med Genet A. August 1, 2013; 161A (8): 2040-6.          


A ubiquitin-conjugating enzyme, ube2d3.2, regulates xMLK2 and pronephros formation in Xenopus., Jean S., Differentiation. April 1, 2008; 76 (4): 431-41.                  


Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos., Nagano T., Development. December 1, 2006; 133 (23): 4643-54.                  


FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation., Sivak JM., Dev Cell. May 1, 2005; 8 (5): 689-701.      


Beta-catenin, MAPK and Smad signaling during early Xenopus development., Schohl A., Development. January 1, 2002; 129 (1): 37-52.                                                                                                      


Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning., Nutt SL., Genes Dev. May 1, 2001; 15 (9): 1152-66.                

???pagination.result.page??? 1