Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (310) Expression Attributions Wiki
XB-ANAT-45

Papers associated with pre-chordal neural plate (and myod1)

Limit to papers also referencing gene:
Show all pre-chordal neural plate papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H., Development. May 15, 2021; 148 (10):                                           


Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis., Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.                      


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates., Le Petillon Y., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.                                


ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus., Ma P., Open Biol. August 1, 2017; 7 (8):                           


Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing., Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.                    


Characterization of the Rx1-dependent transcriptome during early retinal development., Giudetti G., Dev Dyn. October 1, 2014; 243 (10): 1352-61.                                    


NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling., Zhang Y., Dev Biol. August 1, 2014; 392 (1): 15-25.                              


Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling., Sheng R., Nat Commun. July 15, 2014; 5 4393.              


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


Regulation of early Xenopus development by the PIAS genes., Burn B., Dev Dyn. September 1, 2011; 240 (9): 2120-6.          


Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway., Takai A., Development. October 1, 2010; 137 (19): 3293-302.            


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function., Roche DD., Dev Biol. September 1, 2009; 333 (1): 26-36.                              


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal., Rhinn M., Neural Dev. April 2, 2009; 4 12.              


Expression patterns of Src-family tyrosine kinases during Xenopus laevis development., Ferjentsik Z., Int J Dev Biol. January 1, 2009; 53 (1): 163-8.                


Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1., Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.                    


Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development., Dichmann DS., Dev Dyn. July 1, 2008; 237 (7): 1755-66.                                


Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal., Fuentealba LC., Cell. November 30, 2007; 131 (5): 980-93.      


PP2A:B56epsilon is required for eye induction and eye field separation., Rorick AM., Dev Biol. February 15, 2007; 302 (2): 477-93.                  


An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation., Matsuo-Takasaki M., Development. September 1, 2005; 132 (17): 3885-94.                      


Inhibition of the cell cycle is required for convergent extension of the paraxial mesoderm during Xenopus neurulation., Leise WF., Development. April 1, 2004; 131 (8): 1703-15.              


Cloning and characterization of Xenopus Id4 reveals differing roles for Id genes., Liu KJ, Liu KJ., Dev Biol. December 15, 2003; 264 (2): 339-51.                      


Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals., Monsoro-Burq AH., Development. July 1, 2003; 130 (14): 3111-24.                


The latent-TGFbeta-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling., Altmann CR., Dev Biol. August 1, 2002; 248 (1): 118-27.                  


The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus., Goto T., Dev Biol. July 1, 2002; 247 (1): 165-81.                        


Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis., Ribisi S., Dev Biol. November 1, 2000; 227 (1): 183-96.            


Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development., Gómez-Skarmeta JL., Mech Dev. January 1, 1999; 80 (1): 15-27.              


Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE., Development. June 1, 1996; 122 (6): 1711-21.                    


XIdx, a dominant negative regulator of bHLH function in early Xenopus embryos., Wilson R., Mech Dev. February 1, 1995; 49 (3): 211-22.          

???pagination.result.page??? 1