Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9006) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and rpe)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Cell-type expression and activation by light of neuropsins in the developing and mature Xenopus retina., Man LLH., Front Cell Neurosci. January 1, 2023; 17 1266945.                  


INTS13 variants causing a recessive developmental ciliopathy disrupt assembly of the Integrator complex., Mascibroda LG., Nat Commun. October 13, 2022; 13 (1): 6054.                    


Distinct roles for prominin-1 and photoreceptor cadherin in outer segment disc morphogenesis in CRISPR-altered X. laevis., Carr BJ., J Cell Sci. January 11, 2021; 134 (1):                           


Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium., Kita AM., Mol Biol Cell. July 1, 2019; 30 (14): 1645-1654.            


Importin α Partitioning to the Plasma Membrane Regulates Intracellular Scaling., Brownlee C., Cell. February 7, 2019; 176 (4): 805-815.e8.                  


WDR5 Stabilizes Actin Architecture to Promote Multiciliated Cell Formation., Kulkarni SS., Dev Cell. September 10, 2018; 46 (5): 595-610.e3.                              


Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photoreceptor., Sato K., Nat Commun. March 28, 2018; 9 (1): 1255.              


RAPGEF5 Regulates Nuclear Translocation of β-Catenin., Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.                                                


Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways., Sigg MA., Dev Cell. December 18, 2017; 43 (6): 744-762.e11.      


no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development., Nakayama T., Dev Biol. June 15, 2017; 426 (2): 472-486.                          


Frizzled 3 acts upstream of Alcam during embryonic eye development., Seigfried FA., Dev Biol. June 1, 2017; 426 (1): 69-83.                        


Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia., Del Viso F., Dev Cell. September 12, 2016; 38 (5): 478-92.                        


Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components., Wynne DJ., J Cell Biol. September 14, 2015; 210 (6): 899-916.                


Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa., Tam BM., J Neurosci. October 1, 2014; 34 (40): 13336-48.              


Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1., Werner ME., J Cell Biol. August 4, 2014; 206 (3): 367-76.          


Functional diversity of voltage-sensing phosphatases in two urodele amphibians., Mutua J., Physiol Rep. July 16, 2014; 2 (7):                 


Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP)., Garlipp MA., Exp Eye Res. August 1, 2013; 113 192-202.                    


The centriolar satellite protein SSX2IP promotes centrosome maturation., Bärenz F., J Cell Biol. July 8, 2013; 202 (1): 81-95.              


Histology of plastic embedded amphibian embryos and larvae., Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.                                


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


Cep152 interacts with Plk4 and is required for centriole duplication., Hatch EM., J Cell Biol. November 15, 2010; 191 (4): 721-9.          


Xenopus sonic hedgehog guides retinal axons along the optic tract., Gordon L., Dev Dyn. November 1, 2010; 239 (11): 2921-32.      


Facilitative glucose transporter Glut1 is actively excluded from rod outer segments., Gospe SM., J Cell Sci. November 1, 2010; 123 (Pt 21): 3639-44.      


Complete reconstruction of the retinal laminar structure from a cultured retinal pigment epithelium is triggered by altered tissue interaction and promoted by overlaid extracellular matrices., Kuriyama F., Dev Neurobiol. December 1, 2009; 69 (14): 950-8.          


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt., Kaneko J., Neurosci Lett. February 6, 2009; 450 (3): 252-7.


The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors., Baker SA., J Cell Biol. November 3, 2008; 183 (3): 485-98.                    


Functional expression, targeting and Ca2+ signaling of a mouse melanopsin-eYFP fusion protein in a retinal pigment epithelium cell line., Giesbers ME., Photochem Photobiol. January 1, 2008; 84 (4): 990-5.


Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin., Tam BM., J Neurosci. August 22, 2007; 27 (34): 9043-53.              


Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium., Sharma S., Exp Cell Res. April 1, 2007; 313 (6): 1251-9.


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation., Araki M., Dev Growth Differ. February 1, 2007; 49 (2): 109-20.                


Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium., Fairbank PD., Development. October 1, 2006; 133 (20): 4109-18.                    


The circadian clock-containing photoreceptor cells in Xenopus laevis express several isoforms of casein kinase I., Constance CM., Brain Res Mol Brain Res. May 20, 2005; 136 (1-2): 199-211.            


Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo., Pera EM., Int J Dev Biol. January 1, 2005; 49 (7): 781-96.                                  


Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors., Lin-Jones J., J Cell Sci. November 15, 2004; 117 (Pt 24): 5825-34.                


The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa., Loewen CJ., Mol Biol Cell. August 1, 2003; 14 (8): 3400-13.                  


Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis., Alvarez-Viejo M., Brain Res. April 18, 2003; 969 (1-2): 36-43.                


In vitro induction and transplantation of eye during early Xenopus development., Sedohara A., Dev Growth Differ. January 1, 2003; 45 (5-6): 463-71.              


Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate., Kenyon KL., Dev Biol. December 1, 2001; 240 (1): 77-91.          


Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms., Hutson LD., J Neurobiol. November 5, 2001; 49 (2): 79-98.                      


Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal., Jablonski MM., J Neurosci. October 1, 2000; 20 (19): 7149-57.              


Interphotoreceptor retinoid-binding protein (IRBP) is rapidly cleared from the Xenopus interphotoreceptor matrix., Cunningham LL., Exp Eye Res. April 1, 1999; 68 (4): 399-410.              


Melanopsin: An opsin in melanophores, brain, and eye., Provencio I., Proc Natl Acad Sci U S A. January 6, 1998; 95 (1): 340-5.        


Xenopus Pax-6 and retinal development., Hirsch N., J Neurobiol. January 1, 1997; 32 (1): 45-61.            


Reattachment of retinas to cultured pigment epithelial monolayers from Xenopus laevis., Defoe DM., Invest Ophthalmol Vis Sci. April 1, 1994; 35 (5): 2466-76.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Immunolocalization of N-acetylgalactosaminylphosphotransferase in the adult retina and subretinal space., Sweatt AJ., Exp Eye Res. October 1, 1991; 53 (4): 479-87.      


Cytochalasin D inhibits L-glutamate-induced disc shedding without altering L-glutamate-induced increase in adhesiveness., Defoe DM., Exp Eye Res. May 1, 1989; 48 (5): 641-52.

???pagination.result.page??? 1 2 ???pagination.result.next???