Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (12667) Expression Attributions Wiki
XB-ANAT-175

Papers associated with nervous system (and prl.2)

Limit to papers also referencing gene:
Show all nervous system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus., Beckers A., Sci Rep. June 25, 2021; 11 (1): 13333.                    


Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens., Li X., Poult Sci. March 1, 2020; 99 (3): 1643-1654.              


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. December 1, 2019; 284 113212.


Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling., Pinet K., Development. July 22, 2019; 146 (14):                               


The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice., Beckers A., Sci Rep. October 2, 2018; 8 (1): 14678.            


Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photoreceptor., Sato K., Nat Commun. March 28, 2018; 9 (1): 1255.              


miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA., Bellon A., Cell Rep. January 31, 2017; 18 (5): 1171-1186.                              


Protein tyrosine phosphatase 4A3 (PTP4A3) is required for Xenopus laevis cranial neural crest migration in vivo., Maacha S., PLoS One. December 9, 2013; 8 (12): e84717.              


A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome., Rienhoff HY., Am J Med Genet A. August 1, 2013; 161A (8): 2040-6.          


The melanocyte photosensory system in the human skin., Iyengar B., Springerplus. April 12, 2013; 2 (1): 158.                


Dishevelled limits Notch signalling through inhibition of CSL., Collu GM., Development. December 1, 2012; 139 (23): 4405-15.      


Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus., Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.                                          


The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system., Lorenz C., Toxicol Sci. September 1, 2011; 123 (1): 94-102.


Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning., Ma P., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.            


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour., Tachibana T., J Neuroendocrinol. January 1, 2011; 23 (1): 74-81.


Polypyrimidine tract-binding protein is required for the repression of gene expression by all-trans retinoic acid., Tamanoue Y., Dev Growth Differ. June 1, 2010; 52 (5): 469-79.                    


Xenopus RCOR2 (REST corepressor 2) interacts with ZMYND8, which is involved in neural differentiation., Zeng W., Biochem Biophys Res Commun. April 16, 2010; 394 (4): 1024-9.                  


A novel prolactin-like protein (PRL-L) gene in chickens and zebrafish: cloning and characterization of its tissue expression., Wanga Y., Gen Comp Endocrinol. March 1, 2010; 166 (1): 200-10.


Secreted factor FAM3C (ILEI) is involved in retinal laminar formation., Katahira T., Biochem Biophys Res Commun. February 12, 2010; 392 (3): 301-6.          


Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression., Lorenz C., Comp Biochem Physiol C Toxicol Pharmacol. August 1, 2009; 150 (2): 314-21.


HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus., Nagao K., J Biol Chem. April 25, 2008; 283 (17): 11841-9.                        


Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis., Sakamoto T., Peptides. December 1, 2006; 27 (12): 3347-51.


One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis., Fujimoto K., Dev Growth Differ. May 1, 2006; 48 (4): 223-41.            


Temporal and spatial expression patterns of FoxN genes in Xenopus laevis embryos., Schuff M., Int J Dev Biol. January 1, 2006; 50 (4): 429-34.      


RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1., Hendriksen J., J Cell Biol. December 5, 2005; 171 (5): 785-97.                  


Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis., Watanabe T., Dev Biol. January 15, 2005; 277 (2): 508-21.                


Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3., Haremaki T., Development. October 1, 2003; 130 (20): 4907-17.                  


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms., Hutson LD., J Neurobiol. November 5, 2001; 49 (2): 79-98.                      


Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus., Pozzoli O., Dev Biol. May 15, 2001; 233 (2): 495-512.            


Xenopus frizzled-5: a frizzled family member expressed exclusively in the neural retina of the developing eye., Sumanas S., Mech Dev. May 1, 2001; 103 (1-2): 133-6.  


Cloning of a cDNA for Xenopus prolactin receptor and its metamorphic expression profile., Yamamoto T., Dev Growth Differ. April 1, 2000; 42 (2): 167-74.          


Metamorphosis: an exquisite model for hormonal regulation of post-embryonic development., Tata JR., Biochem Soc Symp. January 1, 1996; 62 123-36.


Immunocytochemical identification of growth hormone (GH) cells in the pituitary of three anuran species using an antiserum against purified bullfrog GH., Olivereau M., Cell Tissue Res. December 1, 1993; 274 (3): 627-30.

???pagination.result.page??? 1