Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (103) GO Terms (0) Nucleotides (344) Proteins (35) Interactants (127) Wiki
XB--987153

Papers associated with slc15a1 (and slc15a2)



???displayGene.coCitedPapers???
Show all slc15a1 papers

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

β-Klotho as a Negative Regulator of the Peptide Transporters PEPT1 and PEPT2., Abousaab A, Warsi J, Salker MS, Lang F., Cell Physiol Biochem. January 1, 2016; 40 (5): 874-882.


Role of electrostatic interactions for ligand recognition and specificity of peptide transporters., Boggavarapu R, Jeckelmann JM, Harder D, Ucurum Z, Fotiadis D., BMC Biol. August 6, 2015; 13 58.            


USP18 Sensitivity of Peptide Transporters PEPT1 and PEPT2., Warsi J, Hosseinzadeh Z, Elvira B, Pelzl L, Shumilina E, Zhang DE, Lang KS, Lang PA, Lang F., PLoS One. June 5, 2015; 10 (6): e0129365.            


SPAK dependent regulation of peptide transporters PEPT1 and PEPT2., Warsi J, Dong L, Elvira B, Salker MS, Shumilina E, Hosseinzadeh Z, Lang F., Kidney Blood Press Res. January 1, 2014; 39 (4): 388-98.


Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1., Warsi J, Elvira B, Bissinger R, Shumilina E, Hosseinzadeh Z, Lang F., Kidney Blood Press Res. January 1, 2014; 39 (6): 591-9.


Peptide transporter isoforms are discriminated by the fluorophore-conjugated dipeptides β-Ala- and d-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid., Kottra G, Spanier B, Verri T, Daniel H., Physiol Rep. December 8, 2013; 1 (7): e00165.          


Effect of Janus kinase 3 on the peptide transporters PEPT1 and PEPT2., Warsi J, Hosseinzadeh Z, Dong L, Pakladok T, Umbach AT, Bhavsar SK, Shumilina E, Lang F., J Membr Biol. December 1, 2013; 246 (12): 885-92.


Upregulation of peptide transporters PEPT1 and PEPT2 by Janus kinase JAK2., Hosseinzadeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F., Cell Physiol Biochem. January 1, 2013; 31 (4-5): 673-82.


Raltegravir is a substrate for SLC22A6: a putative mechanism for the interaction between raltegravir and tenofovir., Moss DM, Kwan WS, Liptrott NJ, Smith DL, Siccardi M, Khoo SH, Back DJ, Owen A., Antimicrob Agents Chemother. February 1, 2011; 55 (2): 879-87.


The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters., Geissler S, Zwarg M, Knütter I, Markwardt F, Brandsch M., FEBS J. February 1, 2010; 277 (3): 790-5.


Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone., Rexhepaj R, Rotte A, Kempe DS, Sopjani M, Föller M, Gehring EM, Bhandaru M, Gruner I, Mack AF, Rubio-Aliaga I, Nässl AM, Daniel H, Kuhl D, Lang F., Pflugers Arch. November 1, 2009; 459 (1): 191-202.


High-affinity interaction of sartans with H+/peptide transporters., Knutter I, Kottra G, Fischer W, Daniel H, Brandsch M., Drug Metab Dispos. January 1, 2009; 37 (1): 143-9.


Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited., Knutter I, Wollesky C, Kottra G, Hahn M, Fischer W, Zebisch K, Neubert R, Daniel H, Brandsch M., J Pharmacol Exp Ther. November 1, 2008; 327 (2): 432-41.


The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2., Boehmer C, Palmada M, Klaus F, Jeyaraj S, Lindner R, Laufer J, Daniel H, Lang F., Cell Physiol Biochem. January 1, 2008; 22 (5-6): 705-14.


Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters., Knütter I, Hartrodt B, Tóth G, Keresztes A, Kottra G, Mrestani-Klaus C, Born I, Daniel H, Neubert K, Brandsch M., FEBS J. November 1, 2007; 274 (22): 5905-14.


High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis., Romano A, Kottra G, Barca A, Tiso N, Maffia M, Argenton F, Daniel H, Storelli C, Verri T., Physiol Genomics. February 14, 2006; 24 (3): 207-17.


A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters., Foltz M, Meyer A, Theis S, Demuth HU, Daniel H., J Pharmacol Exp Ther. August 1, 2004; 310 (2): 695-702.


Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2., Chiang CS, Stacey G, Tsay YF., J Biol Chem. July 16, 2004; 279 (29): 30150-7.


Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function., Döring F, Martini C, Walter J, Daniel H., J Membr Biol. March 15, 2002; 186 (2): 55-62.


Synthesis and characterization of high affinity inhibitors of the H+/peptide transporter PEPT2., Theis S, Knutter I, Hartrodt B, Brandsch M, Kottra G, Neubert K, Daniel H., J Biol Chem. March 1, 2002; 277 (9): 7287-92.


Functional roles of histidine and tyrosine residues in the H(+)-peptide transporter PepT1., Chen XZ, Steel A, Hediger MA., Biochem Biophys Res Commun. June 16, 2000; 272 (3): 726-30.


Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2., Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, Ganapathy ME., J Pharm Sci. June 1, 2000; 89 (6): 781-9.


Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2., Zhu T, Chen XZ, Steel A, Hediger MA, Smith DE., Pharm Res. May 1, 2000; 17 (5): 526-32.


Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2., Chen XZ, Zhu T, Smith DE, Hediger MA., J Biol Chem. January 29, 1999; 274 (5): 2773-9.


Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter., Temple CS, Boyd CA., Biochim Biophys Acta. August 14, 1998; 1373 (1): 277-81.


Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications., Döring F, Walter J, Will J, Föcking M, Boll M, Amasheh S, Clauss W, Daniel H., J Clin Invest. June 15, 1998; 101 (12): 2761-7.


Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras., Fei YJ, Liu JC, Fujita T, Liang R, Ganapathy V, Leibach FH., Biochem Biophys Res Commun. May 8, 1998; 246 (1): 39-44.


Electrophysiological analysis of the function of the mammalian renal peptide transporter expressed in Xenopus laevis oocytes., Amasheh S, Wenzel U, Weber WM, Clauss W, Daniel H., J Physiol. October 1, 1997; 504 ( Pt 1) 169-74.


Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2., Fei YJ, Liu W, Prasad PD, Kekuda R, Oblak TG, Ganapathy V, Leibach FH., Biochemistry. January 14, 1997; 36 (2): 452-60.


Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms., Döring F, Dorn D, Bachfischer U, Amasheh S, Herget M, Daniel H., J Physiol. December 15, 1996; 497 ( Pt 3) 773-9.


Molecular cloning and tissue distribution of rat peptide transporter PEPT2., Saito H, Terada T, Okuda M, Sasaki S, Inui K., Biochim Biophys Acta. April 26, 1996; 1280 (2): 173-7.


Mammalian ion-coupled solute transporters., Hediger MA, Kanai Y, You G, Nussberger S., J Physiol. January 1, 1995; 482 7S-17S.

???pagination.result.page??? 1