Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (23) GO Terms (3) Nucleotides (105) Proteins (67) Interactants (65) Wiki
XB-GENEPAGE-997144

Papers associated with hsf1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis., Wu CW, Tessier SN, Storey KB., Comp Biochem Physiol B Biochem Mol Biol. January 1, 2020; 246-247 110461.


The regulation of heat shock proteins in response to dehydration in Xenopus laevis., Luu BE, Wijenayake S, Malik AI, Storey KB., Cell Stress Chaperones. January 1, 2018; 23 (1): 45-53.


Curcumin-induced inhibition of proteasomal activity, enhanced HSP accumulation and the acquisition of thermotolerance in Xenopus laevis A6 cells., Khan S, Heikkila JJ., Comp Biochem Physiol A Mol Integr Physiol. April 1, 2011; 158 (4): 566-76.


Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells., Walcott SE, Heikkila JJ., Comp Biochem Physiol A Mol Integr Physiol. June 1, 2010; 156 (2): 285-93.


Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells., Young JT, Heikkila JJ., Cell Stress Chaperones. May 1, 2010; 15 (3): 323-34.


Manipulating heat shock factor-1 in Xenopus tadpoles: neuronal tissues are refractory to exogenous expression., Dirks RP, van Geel R, Hensen SM, van Genesen ST, Lubsen NH., PLoS One. April 8, 2010; 5 (4): e10158.          


Modulation of Hsf1 activity by novobiocin and geldanamycin., Conde R, Belak ZR, Nair M, O'Carroll RF, Ovsenek N., Biochem Cell Biol. December 1, 2009; 87 (6): 845-51.


Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance., Young JT, Gauley J, Heikkila JJ., Comp Biochem Physiol A Mol Integr Physiol. August 1, 2009; 153 (4): 417-24.


Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells., Voyer J, Heikkila JJ., Comp Biochem Physiol A Mol Integr Physiol. October 1, 2008; 151 (2): 253-61.


A comparison of Hsp90alpha and Hsp90beta interactions with cochaperones and substrates., Taherian A, Krone PH, Ovsenek N., Biochem Cell Biol. February 1, 2008; 86 (1): 37-45.


Protein phosphatase 5 is a negative modulator of heat shock factor 1., Conde R, Xavier J, McLoughlin C, Chinkers M, Ovsenek N., J Biol Chem. August 12, 2005; 280 (32): 28989-96.


Identification of Xenopus heat shock transcription factor-2: conserved role of sumoylation in regulating deoxyribonucleic acid-binding activity of heat shock transcription factor-2 proteins., Hilgarth RS, Murphy LA, O'Connor CM, Clark JA, Park-Sarge OK, Sarge KD., Cell Stress Chaperones. January 1, 2004; 9 (2): 214-20.


Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1., Xavier IJ, Mercier PA, McLoughlin CM, Ali A, Woodgett JR, Ovsenek N., J Biol Chem. September 15, 2000; 275 (37): 29147-52.


Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo., Bharadwaj S, Ali A, Ovsenek N., Mol Cell Biol. December 1, 1999; 19 (12): 8033-41.


HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes., Ali A, Bharadwaj S, O'Carroll R, Ovsenek N., Mol Cell Biol. September 1, 1998; 18 (9): 4949-60.


Induction of the DNA-binding and transcriptional activities of heat shock factor 1 is uncoupled in Xenopus oocytes., Bharadwaj S, Hnatov A, Ali A, Ovsenek N., Biochim Biophys Acta. March 12, 1998; 1402 (1): 79-85.


Intramolecular repression of mouse heat shock factor 1., Farkas T, Kutskova YA, Zimarino V., Mol Cell Biol. February 1, 1998; 18 (2): 906-18.


Disruption of downstream chromatin directed by a transcriptional activator., Brown SA, Kingston RE., Genes Dev. December 1, 1997; 11 (23): 3116-21.


Xenopus heat shock factor 1 is a nuclear protein before heat stress., Mercier PA, Foksa J, Ovsenek N, Westwood JT., J Biol Chem. May 30, 1997; 272 (22): 14147-51.


Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes., Gordon S, Bharadwaj S, Hnatov A, Ali A, Ovsenek N., Dev Biol. January 1, 1997; 181 (1): 47-63.


Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X. laevis hsp70 promoter in vivo., Landsberger N, Wolffe AP., Mol Cell Biol. November 1, 1995; 15 (11): 6013-24.


The cDNA encoding Xenopus laevis heat-shock factor 1 (XHSF1): nucleotide and deduced amino-acid sequences, and properties of the encoded protein., Stump DG, Landsberger N, Wolffe AP., Gene. July 28, 1995; 160 (2): 207-11.


Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1., Baler R, Dahl G, Voellmy R., Mol Cell Biol. April 1, 1993; 13 (4): 2486-96.

???pagination.result.page??? 1