Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (544) GO Terms (6) Nucleotides (117) Proteins (46) Interactants (1444) Wiki
XB--487723

Papers associated with nog (and shh)



???displayGene.coCitedPapers???
Show all nog papers

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The Molecular Mechanism of Body Axis Induction in Lampreys May Differ from That in Amphibians., Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV., Int J Mol Sci. February 19, 2024; 25 (4):         


Normal Table of Xenopus development: a new graphical resource., Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM., Development. July 15, 2022; 149 (14):                         


Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos., Orlov EE, Nesterenko AM, Korotkova DD, Parshina EA, Martynova NY, Zaraisky AG., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.                                


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J, Wielath FM, Vick P., Biol Open. July 15, 2021; 10 (7):                                           


A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone., Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T, Wills AE, Wallingford JB., Dev Dyn. May 1, 2021; 250 (5): 717-731.              


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X., Elife. September 14, 2020; 9                                                                                           


Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development., Pfirrmann T, Jandt E, Ranft S, Lokapally A, Neuhaus H, Perron M, Hollemann T., Proc Natl Acad Sci U S A. September 6, 2016; 113 (36): 10103-8.                    


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C., Development. October 1, 2015; 142 (19): 3416-28.                                    


Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling., Messina A, Lan L, Incitti T, Bozza A, Andreazzoli M, Vignali R, Cremisi F, Bozzi Y, Casarosa S., Stem Cells. August 1, 2015; 33 (8): 2496-508.


The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog., Juraver-Geslin HA, Gómez-Skarmeta JL, Durand BC., Dev Biol. December 1, 2014; 396 (1): 107-20.                    


Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J, Zhao Y, Galati D, Winey M, Klymkowsky MW., Dev Biol. November 15, 2014; 395 (2): 287-98.                    


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S, Castro Colabianchi AM, Monti RJ, Boyadjián López LE, Aguirre CE, Stivala EG, Carrasco AE, López SL., PLoS One. January 1, 2014; 9 (10): e110559.                              


Scaling of dorsal-ventral patterning by embryo size-dependent degradation of Spemann's organizer signals., Inomata H, Shibata T, Haraguchi T, Sasai Y., Cell. June 6, 2013; 153 (6): 1296-311.                      


TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network., Liu C, Goswami M, Talley J, Chesser-Martinez PL, Lou CH, Sater AK., Differentiation. April 1, 2012; 83 (4): 210-9.                  


Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility., Yanai I, Peshkin L, Jorgensen P, Kirschner MW., Dev Cell. April 19, 2011; 20 (4): 483-96.            


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y, Ogura E, Kondoh H, Kamachi Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


Unexpected activities of Smad7 in Xenopus mesodermal and neural induction., de Almeida I, Rolo A, Batut J, Hill C, Stern CD, Linker C., Mech Dev. January 1, 2008; 125 (5-6): 421-31.              


The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology., Handrigan GR, Wassersug RJ., Biol Rev Camb Philos Soc. February 1, 2007; 82 (1): 1-25.


Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures., Khokha MK, Yeh J, Grammer TC, Harland RM., Dev Cell. March 1, 2005; 8 (3): 401-11.                          


Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures., Khokha MK, Yeh J, Grammer TC, Harland RM., Dev Cell. March 1, 2005; 8 (3): 401-11.                          


Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis., Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M., Dev Growth Differ. February 1, 2004; 46 (1): 97-105.        


Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA., Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K., Genesis. June 1, 2002; 33 (2): 86-96.                      


In synergy with noggin and follistatin, Xenopus nodal-related gene induces sonic hedgehog on notochord and floor plate., Ito Y, Kuhara S, Tashiro K., Biochem Biophys Res Commun. March 2, 2001; 281 (3): 714-9.      


Distinct expression of two types of Xenopus Patched genes during early embryogenesis and hindlimb development., Takabatake T, Takahashi TC, Takabatake Y, Yamada K, Ogawa M, Takeshima K., Mech Dev. November 1, 2000; 98 (1-2): 99-104.            


A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1., Pera EM, De Robertis EM., Mech Dev. September 1, 2000; 96 (2): 183-95.                  


Cerberus regulates left-right asymmetry of the embryonic head and heart., Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, Stern CD, Levin M., Curr Biol. September 9, 1999; 9 (17): 931-8.


Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus., Kuo JS, Patel M, Gamse J, Merzdorf C, Liu X, Apekin V, Sive H., Development. August 1, 1998; 125 (15): 2867-82.                  


Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a., Saint-Jeannet JP, He X, Varmus HE, Dawid IB., Proc Natl Acad Sci U S A. December 9, 1997; 94 (25): 13713-8.            


Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos., Salic AN, Kroll KL, Evans LM, Kirschner MW., Development. December 1, 1997; 124 (23): 4739-48.              


Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning., Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquié O., Development. November 1, 1997; 124 (22): 4605-14.


Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity., Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM., Cell. October 31, 1997; 91 (3): 407-16.            


Ectodermal patterning in vertebrate embryos., Sasai Y, De Robertis EM., Dev Biol. February 1, 1997; 182 (1): 5-20.              


Bone morphogenetic proteins in development., Hogan BL., Curr Opin Genet Dev. August 1, 1996; 6 (4): 432-8.


A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning., Sive H, Bradley L., Dev Dyn. March 1, 1996; 205 (3): 265-80.          


Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin., McGrew LL, Lai CJ, Moon RT., Dev Biol. November 1, 1995; 172 (1): 337-42.    


Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage., Lai CJ, Ekker SC, Beachy PA, Moon RT., Development. August 1, 1995; 121 (8): 2349-60.            


Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis., Ekker SC, McGrew LL, Lai CJ, Lee JJ, Lee JJ, von Kessler DP, Moon RT, Beachy PA., Development. August 1, 1995; 121 (8): 2337-47.        

???pagination.result.page??? 1