Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (22) GO Terms (2) Nucleotides (2226) Proteins (53) Interactants (398) Wiki
XB-GENEPAGE-6454252

Papers associated with krt70



???displayGene.coCitedPapers???
4 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A CRISPR-Cas9-mediated versatile method for targeted integration of a fluorescent protein gene to visualize endogenous gene expression in Xenopus laevis., Mochii M, Akizuki K, Ossaka H, Kagawa N, Umesono Y, Suzuki KT., Dev Biol. February 1, 2024; 506 42-51.                                


The transcription factor Hypermethylated in Cancer 1 (Hic1) regulates neural crest migration via interaction with Wnt signaling., Ray H, Chang C., Dev Biol. July 15, 2020; 463 (2): 169-181.                


Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner., Devotta A, Hong CS, Saint-Jeannet JP., Elife. July 23, 2018; 7                             


Polarized Wnt signaling regulates ectodermal cell fate in Xenopus., Huang YL, Niehrs C., Dev Cell. April 28, 2014; 29 (2): 250-7.                  


Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2., Das S, Chang C., Dev Dyn. August 1, 2012; 241 (8): 1260-73.                    


The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis., Takebayashi-Suzuki K, Kitayama A, Terasaka-Iioka C, Ueno N, Suzuki A., Dev Biol. December 1, 2011; 360 (1): 11-29.              


Neural crest specification by noncanonical Wnt signaling and PAR-1., Ossipova O, Sokol SY., Development. December 1, 2011; 138 (24): 5441-50.                        


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT, Kashiwagi K, Ujihara M, Marukane T, Tazaki A, Watanabe K, Mizuno N, Ueda Y, Kondoh H, Kashiwagi A, Mochii M., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B, Neilson KM, Moody SA., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS, Luo T, Xu Y, Xu Y, Sargent TD., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


PAR1 specifies ciliated cells in vertebrate ectoderm downstream of aPKC., Ossipova O, Tabler J, Green JB, Sokol SY., Development. December 1, 2007; 134 (23): 4297-306.          


Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation., Chang C, Harland RM., Development. November 1, 2007; 134 (21): 3861-72.                


The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways., Yan B, Moody SA., Dev Biol. May 1, 2007; 305 (1): 103-19.        


Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KW, Papalopulu N., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  


Refinement of gene expression patterns in the early Xenopus embryo., Wardle FC, Smith JC., Development. October 1, 2004; 131 (19): 4687-96.            


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, Blumenstock C, Niehrs C., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE, Dawid IB., Dev Biol. February 1, 1990; 137 (2): 414-8.        


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E, Achtstätter T, Franke WW., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


The role of fibroblast growth factor in early Xenopus development., Slack JM, Darlington BG, Gillespie LL, Godsave SF, Isaacs HV, Paterno GD., Development. January 1, 1989; 107 Suppl 141-8.


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B, Herrmann H, Franz JK, Franke WW., Development. December 1, 1988; 104 (4): 533-48.                      


Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE, Jamrich M, Richter K, Sargent TD, Dawid IB., Genes Dev. July 1, 1988; 2 (7): 853-62.            


Developmentally regulated cytokeratin gene in Xenopus laevis., Winkles JA, Sargent TD, Parry DA, Jonas E, Dawid IB., Mol Cell Biol. October 1, 1985; 5 (10): 2575-81.

???pagination.result.page??? 1