Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (39) GO Terms (0) Nucleotides (5) Proteins (4) Interactants (76) Wiki
XB-GENEPAGE-22068775

Papers associated with nps



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Subacute toxicity and endocrine-disrupting effects of Fe2O3, ZnO, and CeO2 nanoparticles on amphibian metamorphosis., Arslan E, Güngördü A., Environ Sci Pollut Res Int. January 1, 2024; 31 (3): 4174-4195.


Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis., Carotenuto R, Tussellino M, Fusco S, Benvenuto G, Formiggini F, Avallone B, Motta CM, Fogliano C, Netti PA., Nanomaterials (Basel). September 4, 2023; 13 (17):                   


The dorsal blastopore lip is a source of signals inducing planar cell polarity in the Xenopus neural plate., Mancini P, Ossipova O, Sokol SY., Biol Open. July 15, 2021; 10 (7):                 


Antibacterial and In Vivo Studies of a Green, One-Pot Preparation of Copper/Zinc Oxide Nanoparticle-Coated Bandages., Deokar AR, Perelshtein I, Saibene M, Perkas N, Mantecca P, Nitzan Y, Gedanken A., Membranes (Basel). June 22, 2021; 11 (7):               


Iron nanoparticle bio-interactions evaluated in Xenopus laevis embryos, a model for studying the safety of ingested nanoparticles., Bonfanti P, Colombo A, Saibene M, Fiandra L, Armenia I, Gamberoni F, Gornati R, Bernardini G, Mantecca P., Nanotoxicology. March 1, 2020; 14 (2): 196-213.                        


Aquaporin-7: A Dynamic Aquaglyceroporin With Greater Water and Glycerol Permeability Than Its Bacterial Homolog GlpF., Moss FJ, Mahinthichaichan P, Lodowski DT, Kowatz T, Tajkhorshid E, Engel A, Boron WF, Vahedi-Faridi A., Front Physiol. January 1, 2020; 11 728.              


Comparative Analysis of the Developmental Toxicity in Xenopus laevis and Danio rerio Induced by Al2 O3 Nanoparticle Exposure., Ismail T, Lee HK, Kim C, Kim Y, Lee H, Kim JH, Kwon S, Huh TL, Khang D, Kim SH, Choi SC, Lee HS., Environ Toxicol Chem. December 1, 2019; 38 (12): 2672-2681.


The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties., Zanella D, Bossi E, Gornati R, Faria N, Powell J, Bernardini G., Biochim Biophys Acta Biomembr. October 1, 2019; 1861 (10): 182997.


High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier., Chen Z, Gabizon R, Brown AI, Lee A, Song A, Díaz-Celis C, Kaplan CD, Koslover EF, Yao T, Bustamante C., Elife. July 31, 2019; 8               


Effects of nonylphenols on embryonic development and metamorphosis of Xenopus laevis: FETAX and amphibian metamorphosis toxicity test (OECD TG231)., Xu Y, Xu Y, Park SJ, Gye MC., Environ Res. July 1, 2019; 174 14-23.


Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review., Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M., Molecules. August 31, 2017; 22 (9):


Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality Assay as a Predictor of Nanomaterial Safety., Al-Yousuf K, Webster CA, Wheeler GN, Bombelli FB, Sherwood V., Curr Protoc Toxicol. August 4, 2017; 73 20.13.1-20.13.33.


Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure., Suzuki M, Sato M, Koyama H, Hara Y, Hayashi K, Yasue N, Imamura H, Fujimori T, Nagai T, Campbell RE, Ueno N., Development. April 1, 2017; 144 (7): 1307-1316.                            


Teratogenic hazard of BPEI-coated silver nanoparticles to Xenopus laevis., Colombo A, Saibene M, Moschini E, Bonfanti P, Collini M, Kasemets K, Mantecca P., Nanotoxicology. April 1, 2017; 11 (3): 405-418.


Triggering signaling pathways using F-actin self-organization., Colin A, Bonnemay L, Gayrard C, Gautier J, Gueroui Z., Sci Rep. October 4, 2016; 6 34657.          


An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment., Webster CA, Di Silvio D, Devarajan A, Bigini P, Micotti E, Giudice C, Salmona M, Wheeler GN, Sherwood V, Bombelli FB., Nanomedicine (Lond). March 1, 2016; 11 (6): 643-56.


Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes., Bossi E, Zanella D, Gornati R, Bernardini G., Sci Rep. February 29, 2016; 6 22254.                    


Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells., Thit A, Selck H, Bjerregaard HF., Toxicol In Vitro. August 1, 2015; 29 (5): 1053-9.


Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?, Bonfanti P, Moschini E, Saibene M, Bacchetta R, Rettighieri L, Calabri L, Colombo A, Mantecca P., Int J Environ Res Public Health. July 28, 2015; 12 (8): 8828-48.                


Toxicity Evaluation of a New Zn-Doped CuO Nanocomposite With Highly Effective Antibacterial Properties., Mantecca P, Moschini E, Bonfanti P, Fascio U, Perelshtein I, Lipovsky A, Chirico G, Bacchetta R, Del Giacco L, Colombo A, Gedanken A., Toxicol Sci. July 1, 2015; 146 (1): 16-30.


Toxicity of CeO2 nanoparticles at different trophic levels--effects on diatoms, chironomids and amphibians., Bour A, Mouchet F, Verneuil L, Evariste L, Silvestre J, Pinelli E, Gauthier L., Chemosphere. February 1, 2015; 120 230-6.


Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis., Carew AC, Hoque ME, Metcalfe CD, Peyrot C, Wilkinson KJ, Helbing CC., Aquat Toxicol. February 1, 2015; 159 99-108.


Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis., Bacchetta R, Moschini E, Santo N, Fascio U, Del Giacco L, Freddi S, Camatini M, Mantecca P., Nanotoxicology. November 1, 2014; 8 (7): 728-44.


Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases., Vilas GL, Loganathan SK, Liu J, Riau AK, Young JD, Mehta JS, Vithana EN, Casey JR., Hum Mol Genet. November 15, 2013; 22 (22): 4579-90.                    


Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death., Thit A, Selck H, Bjerregaard HF., Toxicol In Vitro. August 1, 2013; 27 (5): 1596-601.


Pharmacological reversal of histone methylation presensitizes pancreatic cancer cells to nucleoside drugs: in vitro optimization and novel nanoparticle delivery studies., Hung SW, Mody H, Marrache S, Bhutia YD, Davis F, Cho JH, Zastre J, Dhar S, Chu CK, Govindarajan R., PLoS One. January 1, 2013; 8 (8): e71196.            


Regulation of the nucleosome unwrapping rate controls DNA accessibility., North JA, Shimko JC, Javaid S, Mooney AM, Shoffner MA, Rose SD, Bundschuh R, Fishel R, Ottesen JJ, Poirier MG., Nucleic Acids Res. November 1, 2012; 40 (20): 10215-27.              


Photothermal release of small molecules from gold nanoparticles in live cells., Zandberg WF, Bakhtiari AB, Erno Z, Hsiao D, Gates BD, Claydon T, Branda NR., Nanomedicine. August 1, 2012; 8 (6): 908-15.


Nano-sized CuO, TiO₂ and ZnO affect Xenopus laevis development., Bacchetta R, Santo N, Fascio U, Moschini E, Freddi S, Chirico G, Camatini M, Mantecca P., Nanotoxicology. June 1, 2012; 6 (4): 381-98.


The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic., Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF., J Exp Bot. August 1, 2011; 62 (12): 4391-8.          


The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes., Donham DC, Scorgie JK, Churchill ME., Nucleic Acids Res. July 1, 2011; 39 (13): 5449-58.          


Involvement of the calcium-sensing receptor in human taste perception., Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T, Maruyama Y, Miyamura N, Eto Y., J Biol Chem. January 8, 2010; 285 (2): 1016-22.


Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei., Promeneur D, Liu Y, Maciel J, Agre P, King LS, Kumar N., Proc Natl Acad Sci U S A. February 13, 2007; 104 (7): 2211-6.


ElrA binding to the 3'UTR of cyclin E1 mRNA requires polyadenylation elements., Slevin MK, Gourronc F, Hartley RS., Nucleic Acids Res. January 1, 2007; 35 (7): 2167-76.              


Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei., Uzcategui NL, Szallies A, Pavlovic-Djuranovic S, Palmada M, Figarella K, Boehmer C, Lang F, Beitz E, Duszenko M., J Biol Chem. October 8, 2004; 279 (41): 42669-76.


A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites., Hansen M, Kun JF, Schultz JE, Beitz E., J Biol Chem. February 15, 2002; 277 (7): 4874-82.


Allosteric activation of the Ca2+ receptor expressed in Xenopus laevis oocytes by NPS 467 or NPS 568., Hammerland LG, Garrett JE, Hung BC, Levinthal C, Nemeth EF., Mol Pharmacol. June 1, 1998; 53 (6): 1083-8.


Coupling of calcium receptors to inositol phosphate and cyclic AMP generation in mammalian cells and Xenopus laevis oocytes and immunodetection of receptor protein by region-specific antipeptide antisera., Chang W, Pratt S, Chen TH, Nemeth E, Huang Z, Shoback D., J Bone Miner Res. April 1, 1998; 13 (4): 570-80.


Phylogenetic cross-reactivities of monoclonal antibodies produced against rat neurophysin., Ben-Barak Y, Russell JT, Whitnall M, Ozato K, Gainer H., Cell Mol Neurobiol. December 1, 1984; 4 (4): 339-49.

???pagination.result.page??? 1