Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-13451
J Gen Physiol 1999 Mar 01;1133:389-414.
Show Gene links Show Anatomy links

Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation.

Ledwell JL , Aldrich RW .


???displayArticle.abstract???
Charged residues in the S4 transmembrane segment play a key role in determining the sensitivity of voltage-gated ion channels to changes in voltage across the cell membrane. However, cooperative interactions between subunits also affect the voltage dependence of channel opening, and these interactions can be altered by making substitutions at uncharged residues in the S4 region. We have studied the activation of two mutant Shaker channels that have different S4 amino acid sequences, ILT (V369I, I372L, and S376T) and Shaw S4 (the S4 of Drosophila Shaw substituted into Shaker), and yet have very similar ionic current properties. Both mutations affect cooperativity, making a cooperative transition in the activation pathway rate limiting and shifting it to very positive voltages, but analysis of gating and ionic current recordings reveals that the ILT and Shaw S4 mutant channels have different activation pathways. Analysis of gating currents suggests that the dominant effect of the ILT mutation is to make the final cooperative transition to the open state of the channel rate limiting in an activation pathway that otherwise resembles that of Shaker. The charge movement associated with the final gating transition in ILT activation can be measured as an isolated component of charge movement in the voltage range of channel opening and accounts for 13% ( approximately 1.8 e0) of the total charge moved in the ILT activation pathway. The remainder of the ILT gating charge (87%) moves at negative voltages, where channels do not open, and confirms the presence of Shaker-like conformational changes between closed states in the activation pathway. In contrast to ILT, the activation pathway of Shaw S4 seems to involve a single cooperative charge-moving step between a closed and an open state. We cannot detect any voltage-dependent transitions between closed states for Shaw S4. Restoring basic residues that are missing in Shaw S4 (R1, R2, and K7) rescues charge movement between closed states in the activation pathway, but does not alter the voltage dependence of the rate-limiting transition in activation.

???displayArticle.pubmedLink??? 10051516
???displayArticle.pmcLink??? PMC2222902

???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: tbx2


???attribute.lit??? ???displayArticles.show???
References [+] :
Aggarwal, Contribution of the S4 segment to gating charge in the Shaker K+ channel. 1996, Pubmed, Xenbase