Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25097
Biochem J 1991 Feb 01;273 ( Pt 3):673-8.
Show Gene links Show Anatomy links

Insulin and insulin-like-growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes. Comparison with insulin receptors from liver and muscle.

Hainaut P , Kowalski A , Giorgetti S , Baron V , Van Obberghen E .


???displayArticle.abstract???
Insulin and insulin-like-growth-factor-I (IGF-I) receptors were partially purified from full-grown (stages V-VI) Xenopus laevis oocytes by affinity chromatography on wheat-germ agglutinin-agarose. Competitive-binding assays revealed high-affinity binding sites for both insulin and IGF-I (Kd = 2.5 x 10(-10) M and 8 x 10(-10) M respectively). However, IGF-I receptors were about 15 times more abundant than insulin receptors (22.5 x 10(11) versus 1.5 x 10(11)/mg of protein). Moreover, comparison of intact and collagenase-treated oocytes showed that most of the insulin receptors were in the oocyte envelopes, whereas IGF-I receptors were essentially at the oocyte surface. Oocyte receptors were composed of alpha-subunits of approximately 130 kDa and a doublet of beta-subunits of 95 and 105 kDa, which both had ligand-induced phosphorylation patterns compatible with IGF-I receptor beta-subunits. Accordingly, the receptor tyrosine kinase was stimulated at low IGF-I concentrations [half-maximally effective concentration (EC50) approximately 0.5-1 nM], and at higher insulin concentrations (EC50 approximately 20-50 nM). Partially purified glycoproteins from Xenopus liver and muscle contained mainly receptors of the insulin-receptor type, with alpha-subunits of 140 kDa in liver and 125 kDa in muscle, and doublets of beta-subunits of 92-98 kDa in liver and 85-94 kDa in muscle. Immunoprecipitation of receptors from oocytes, liver and muscle by receptor-specific anti-peptide antibodies suggested that the beta-subunit heterogeneity resulted from the existence of two distinct IGF-I receptors in oocytes and of two distinct insulin receptors in both liver and muscle. In the different tissues, the two receptor subtypes differed at least by their beta-subunit C-terminal region.

???displayArticle.pubmedLink??? 1847619
???displayArticle.pmcLink??? PMC1149816
???displayArticle.link??? Biochem J


Species referenced: Xenopus laevis
Genes referenced: igf1 ins

References [+] :
Alexandrides, A novel fetal insulin-like growth factor (IGF) I receptor. Mechanism for increased IGF I- and insulin-stimulated tyrosine kinase activity in fetal muscle. 1989, Pubmed