Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis.
Matsuura K
,
Fujimoto K
,
Das B
,
Fu L
,
Lu CD
,
Shi YB
.
???displayArticle.abstract??? Thyroid hormone (T3) is important for adult organ function and vertebrate development. Amphibian metamorphosis is totally dependent on T3 and offers a unique opportunity to study how T3 controls postembryonic development in vertebrates. Earlier studies have demonstrated that TR mediates the metamorphic effects of T3 in Xenopus laevis. Liganded TR recruits histone modifying coactivator complexes to target genes during metamorphosis. This leads to nucleosomal removal and histone modifications, including methylation of histone H3 lysine (K) 79, in the promoter regions, and the activation of T3-inducible genes. We show that Dot1L, the only histone methyltransferase capable of methylating H3K79, is directly regulated by TR via binding to a T3 response element in the promoter region during metamorphosis in Xenopus tropicalis, a highly related species of Xenopus laevis. We further show that Dot1L expression in both the intestine and tail correlates with the transformation of the organs. Our findings suggest that TR activates Dot1L, which in turn participates in metamorphosis through a positive feedback to enhance H3K79 methylation and gene activation by liganded TR.
Figure 1. Mouse and Xenopus tropicalis DOT1L proteins are highly conserved. (A) Schematic alignment of mouse and Xenopus tropicalis DOT1L. The gray boxes represent conserved domains for S-adenosylmethionine (AdoMet or SAM)-dependent methyltransferases (AdoMet-MTases). The black boxes indicate structural maintenance of chromosome (SMC) domains. GenBank accession numbers: Mouse (m; Mus musculus) Dot1a (AAP42293) [50], Xenopus tropicalis (Xt) Dot1L (XP_002937984). Note that the N-terminal region is highly conserved between mouse and Xenopus tropicalis Dot1L due to the presence of the AdoMet-MTase and SMC domains. (B) The amino acid sequences of the nearly perfectly conserved AdoMet-MTase domain of mouse and Xenopus DOT1L. The AdoMet-binding site, which is essential for the methyltransferase activity, is boxed.
Figure 2. Xenopus tropicalis Dot1L is induced in the intestine and tail upon treatment of premetamorphic tadpoles with T3. Stage 54 tadpoles were treated with 10 nM T3 for 2 days and total RNA was isolated from the intestine (A) and tail (B). qRT-PCR was conducted to examine the expression of Dot1L mRNA. Dot1L expression was normalized to the expression of the control gene EF1α (elongation factor 1α). Error bars indicate s.e.m.
Figure 3. Upregulation of Xenopus tropicalis Dot1L expression in the intestine and tail during natural metamorphosis. Total RNA was isolated from the intestine (A) and tail (B) at the indicated developmental stages from premetamorphosis to the end of metamorphosis (stage 66). The expression of Dot1L mRNA was determined by qRT-PCR as in Figure 2. Error bars indicate s.e.m. Note that there were no tail samples at stage 66 (B) as the tail is completely resorbed by stage 66.
Figure 4. TR binds to the putative TREs in Dot1L gene in vitro. (A) Schematics diagram of the putative TREs in Xenopus tropicalis Dot1L gene. The TREs are shown as white boxes with arrows indicating the orientation of TREs. The black box shows exon. (B) The sequences of wild type and mutant Dot1L TRE1 and TRE2 used in the gel shift assay in comparison to the consensus TRE and the TRE of Xenopus laevis TRβA gene. Bold letters show conserved nucleotides and the mutated nucleotides are underlined. (C) Both Dot1L TRE1 and TRE2 compete against the TRE of Xenopus laevis TRβA for binding to TR/RXR heterodimers. The labeled Xenopus laevis TRβA promoter TRE was mixed with in vitro translated TR/RXR heterodimers in the presence or absence of 4×, 20×, or 100× unlabeled wild type or mutant Dot1L TRE1 or TRE2 as indicated. The reaction mixture was analyzed by gel retardation assay. Arrowhead indicates the TR/RXR-TRE complex. Note that both wild-type Dot1L TREs competed while the mutations reduced or abolished their ability to compete for binding to TR/RXR. (D) Dot1L TRE2 has higher affinity than TRE1 for TR/RXR heterodimer in vitro. Gel mobility shift assay was done as in (C) except with 20× unlabeled Xenopus laevis TRβA TRE, Dot1L TRE1, and Dot1L TRE2. Note that Xenopus laevis TRβA TRE competed most effectively, followed by Dot1L TRE2, while Dot1L TRE1 was least effective.
Figure 5. The activation of Xenopus tropicalis Dot1L promoter by liganded TR in vivo is dependent on TRE2. On the top of each panel shows a schematic diagram of the promoter construct with or without mutations in TRE1 (mTRE1) and/or TRE2 (mTRE2). The lower portion shows the promoter activity in the frog oocytes. For the transcription assay, wild type or mutant promoter construct was co-injected with the control Renilla luciferase construct phRG-tk into the nuclei of the oocytes with or without prior cytoplasmic injection of mRNAs for Xenopus tropicalis TRα and RXRβ. The oocytes were incubated at 18°C overnight in the presence or absence of 100 nM T3 and then used for dual luciferase assays. The relative activities of the firefly luciferase to Renilla luciferase were plotted. Error bars indicate s.e.m. Note that mutation of TRE1 alone had no effect on the regulation of the promoter by TR/RXR both in the presence or absence of T3 while mutating of TRE2 alone or together with TRE1 abolished the regulation by TR/RXR, suggesting that TRE2 is the functional TRE
Figure 6. TR binds to the TRE2 in Dot1L promoter in the intestine and tail during T3-induced metamorphosis. Stage 54 tadpoles were treated with or without T3 for 2 days. The intestine (A) or tail (B) was isolated for ChIP assay with a polyclonal antibody against TR (top) or Id14 (bottom), a negative control for antibody specificity. The immunoprecipitated DNA was analyzed by qPCR for the presence of the TRE regions of Dot1L promoter. A region of exon 2 (ex2) of Dot1L gene was analyzed as a negative control for binding specificity. Note that strong binding of TR to TRE2 in Dot1L gene was observed in the absence of T3 in premetamorphic tadpoles and that this binding was increased slightly upon T3 treatment in both organs. TR signal at the TRE1 was very low in both organs with or without T3 treatment, consistent with the results from transcription and in vitro TR binding assays. Only background signals were observed with the anti-ID14 antibody. Error bars indicate s.e.m
Bagamasbad,
A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta.
2008, Pubmed,
Xenbase
Bagamasbad,
A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta.
2008,
Pubmed
,
Xenbase
Barry,
Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development.
2010,
Pubmed
Barski,
High-resolution profiling of histone methylations in the human genome.
2007,
Pubmed
Barth,
Fast signals and slow marks: the dynamics of histone modifications.
2010,
Pubmed
Bilesimo,
Specific histone lysine 4 methylation patterns define TR-binding capacity and differentiate direct T3 responses.
2011,
Pubmed
,
Xenbase
Brown,
Amphibian metamorphosis.
2007,
Pubmed
,
Xenbase
Buchholz,
Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog.
2006,
Pubmed
,
Xenbase
Buchholz,
A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes.
2003,
Pubmed
,
Xenbase
Buchholz,
Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis.
2004,
Pubmed
,
Xenbase
Buchholz,
Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis.
2004,
Pubmed
,
Xenbase
Cao,
Role of histone H3 lysine 27 methylation in Polycomb-group silencing.
2002,
Pubmed
Cao,
The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.
2004,
Pubmed
Das,
Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis.
2009,
Pubmed
,
Xenbase
Denver,
Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis.
2009,
Pubmed
,
Xenbase
Dillon,
The SET-domain protein superfamily: protein lysine methyltransferases.
2005,
Pubmed
Feng,
Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain.
2002,
Pubmed
Greer,
Histone methylation: a dynamic mark in health, disease and inheritance.
2012,
Pubmed
Havis,
Metamorphic T3-response genes have specific co-regulator requirements.
2003,
Pubmed
,
Xenbase
Ishizuya-Oka,
Evolutionary insights into postembryonic development of adult intestinal stem cells.
2011,
Pubmed
Jones,
The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure.
2008,
Pubmed
Kouzarides,
Chromatin modifications and their function.
2007,
Pubmed
Lazar,
Thyroid hormone receptors: multiple forms, multiple possibilities.
1993,
Pubmed
Li,
The role of chromatin during transcription.
2007,
Pubmed
Mangelsdorf,
The nuclear receptor superfamily: the second decade.
1995,
Pubmed
Matsuda,
Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis.
2009,
Pubmed
,
Xenbase
Matsuura,
Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development.
2012,
Pubmed
,
Xenbase
Maunakea,
Epigenome mapping in normal and disease States.
2010,
Pubmed
Nakajima,
Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis.
2003,
Pubmed
,
Xenbase
Nguyen,
The diverse functions of Dot1 and H3K79 methylation.
2011,
Pubmed
Paul,
Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development.
2005,
Pubmed
,
Xenbase
Paul,
SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis.
2007,
Pubmed
,
Xenbase
Paul,
Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis.
2005,
Pubmed
,
Xenbase
Ranjan,
Transcriptional repression of Xenopus TR beta gene is mediated by a thyroid hormone response element located near the start site.
1994,
Pubmed
,
Xenbase
Roh,
The genomic landscape of histone modifications in human T cells.
2006,
Pubmed
Sachs,
Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development.
2002,
Pubmed
,
Xenbase
Sandelin,
Prediction of nuclear hormone receptor response elements.
2005,
Pubmed
Sato,
A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis.
2007,
Pubmed
,
Xenbase
Schreiber,
Cell-cell interactions during remodeling of the intestine at metamorphosis in Xenopus laevis.
2009,
Pubmed
,
Xenbase
Schreiber,
Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor.
2001,
Pubmed
,
Xenbase
Shi,
Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes.
2009,
Pubmed
,
Xenbase
Shi,
The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis.
2011,
Pubmed
,
Xenbase
Shi,
Genomic organization and alternative promoter usage of the two thyroid hormone receptor beta genes in Xenopus laevis.
1992,
Pubmed
,
Xenbase
Shilatifard,
Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.
2006,
Pubmed
Singer,
Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae.
1998,
Pubmed
Tata,
Gene expression during metamorphosis: an ideal model for post-embryonic development.
1993,
Pubmed
Tomita,
Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development.
2004,
Pubmed
,
Xenbase
Tsai,
Molecular mechanisms of action of steroid/thyroid receptor superfamily members.
1994,
Pubmed
Wang,
Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis.
2008,
Pubmed
,
Xenbase
Wang,
Characterization of human epigenomes.
2009,
Pubmed
Wang,
Combinatorial patterns of histone acetylations and methylations in the human genome.
2008,
Pubmed
Wong,
Transcription from the thyroid hormone-dependent promoter of the Xenopus laevis thyroid hormone receptor betaA gene requires a novel upstream element and the initiator, but not a TATA Box.
1998,
Pubmed
,
Xenbase
Wong,
Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors.
1995,
Pubmed
,
Xenbase
Yen,
Physiological and molecular basis of thyroid hormone action.
2001,
Pubmed
Zhang,
Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase.
2004,
Pubmed