XB-ART-27535
Dev Biol
1988 May 01;1271:157-69.
Show Gene links
Show Anatomy links
An M-phase-specific protein kinase of Xenopus oocytes: partial purification and possible mechanism of its periodic activation.
???displayArticle.abstract???
The activity of a Ca2+- and cyclic nucleotide-independent protein kinase(s) which catalyzes hyperphosphorylation of a set of endogenous proteins, including a 95-kDa soluble phosphoprotein, is found to fluctuate in both the meiotic and mitotic cell cycles of Xenopus oocytes and activated eggs. The activity is high in M-phase and hardly detectable in interphase. The activity copurifies with a major histone kinase(s) throughout four purification steps: ammonium sulfate precipitation, DEAE-cellulose chromatography, high-performance liquid chromatography on TSK G3000, and CM-Sepharose chromatography. This suggests that a single enzyme shares activity against endogenous proteins and added histones. Changes in the activity of the M-phase-specific protein kinase(s) as assayed in vitro correlate with changes in the extent of protein phosphorylation in oocytes pulse-labeled with 32P-phosphate by microinjection during meiotic maturation and the early embryonic cell cycle. This suggests that the kinase(s) has a broad specificity and plays a key role in the increased protein phosphorylation which occurs at the transition to M-phase. Microinjection of the maturation-promoting factor (MPF) into immature oocytes triggers, after a 10-min lag period, the activation of the M-phase specific kinase(s), even in the absence of protein synthesis. In contrast MPF microinjection does not induce kinase activation in cycloheximide-treated oocytes arrested after completion of the first meiotic cell cycle or in activated eggs arrested in S-phase by incubation in cycloheximide. This suggests that immature oocytes contain an inactive kinase precursor (prokinase) which is synthesized at each of the following cell cycles. In the absence of MPF addition, the prokinase to kinase transition occurs "spontaneously" after a 2-hr lag period in high-speed supernatants prepared from prophase-arrested oocytes if low-molecular-weight metabolites are eliminated by gel filtration. Addition of ATP, but not of AMP-PNP (adenylyl-imidodiphosphate), prevents spontaneous kinase activation in gel-filtered extracts. We propose that MPF activates the M-phase-specific protein kinase in the intact cell by inactivating a factor which requires phosphorylation conditions to inhibit the prokinase to kinase transition.
???displayArticle.pubmedLink??? 2834245
???displayArticle.link??? Dev Biol
Species referenced: Xenopus laevis
Genes referenced: pnp