Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-46652
J Am Chem Soc 2012 Sep 12;13436:14890-6. doi: 10.1021/ja304560x.
Show Gene links Show Anatomy links

Functionally important aromatic-aromatic and sulfur-π interactions in the D2 dopamine receptor.

Daeffler KN , Lester HA , Dougherty DA .


???displayArticle.abstract???
The recently published crystal structure of the D3 dopamine receptor shows a tightly packed region of aromatic residues on helices 5 and 6 in the space bridging the binding site and what is thought to be the origin of intracellular helical motion. This highly conserved region also makes contacts with residues on helix 3, and here we use double mutant cycle analysis and unnatural amino acid mutagenesis to probe the functional role of several residues in this region of the closely related D2 dopamine receptor. Of the eight mutant pairs examined, all show significant functional coupling (Ω > 2), with the largest coupling coefficients observed between residues on different helices, C3.36/W6.48, T3.37/S5.46, and F5.47/F6.52. Additionally, three aromatic residues examined, F5.47, Y5.48, and F5.51, show consistent trends upon progressive fluorination of the aromatic side chain. These trends are indicative of a functionally important electrostatic interaction with the face of the aromatic residue examined, which is likely attributed to aromatic-aromatic interactions between residues in this microdomain. We also propose that the previously determined fluorination trend at W6.48 is likely due to a sulfur-π interaction with the side chain of C3.36. We conclude that these residues form a tightly packed structural microdomain that connects helices 3, 5, and 6, thus forming a barrier that prevents dopamine from binding further toward the intracellular surface. Upon activation, these residues likely do not change their relative conformation, but rather act to translate agonist binding at the extracellular surface into the large intracellular movements that characterize receptor activation.

???displayArticle.pubmedLink??? 22897614
???displayArticle.pmcLink??? PMC3461201
???displayArticle.link??? J Am Chem Soc
???displayArticle.grants??? [+]


References [+] :
Albeck, Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. 2000, Pubmed